Browse > Article
http://dx.doi.org/10.5012/bkcs.2011.32.8.2611

Physical Properties of Mercaptopyruvic-acid Layer Formed on Gold Surfaces  

Park, Jin-Won (Department of Chemical Engineering, College of Engineering, Seoul National University of Science and Technology)
Publication Information
Abstract
We studied the physical properties of the mercaptopyruvic-acid layer formed on gold surfaces, which has the interactions with the titanium dioxide surface for design of gold- titanium dioxide distribution. Surface force measurements were performed, using the atomic force microscope (AFM), between the surfaces as a function of the salt concentration and pH value. The forces were analyzed with the DLVO (Derjaguin-Landau-Verwey-Overbeek) theory, to evaluate the potential and charge density of the surfaces quantitatively for each salt concentration and each pH value. The difference in the properties reflected the effect of the isoelectric point on the surface forces. The forces were interpreted for the evaluation with the law of mass action and the ionizable groups on the surface. The salt concentration dependence of the surface properties, found from the measurement at pH 8.0, was consistent with the prediction from the law. It was found that the mercaptopyruvic-acid layer had higher values for the surface charge densities and potentials than the titanium dioxide surfaces at pH 8, which may be attributed to the ionized-functional-groups of the mercaptopyruvic-acid layer.
Keywords
Mercaptopyruvic-acid; Gold surface; $TiO_2$ surface; AFM; DLVO theory;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Navalon, S.; de Miguel, M.; Martin R.; Alvaro, M.; Garcia, H. J. Am. Chem. Soc. 2011, 133, 2218.   DOI   ScienceOn
2 Kafizasa, A.; Kellicia, S.; Darra, J. A.; Parkin, I. P. J. Photochem. & Photobiol. A-Chem. 2009, 204, 183.   DOI   ScienceOn
3 Valden, M.; Lai, X.; Goodman, D. W. Science 1998, 281, 1647.   DOI   ScienceOn
4 Sakurai, H.; Tsubota, S.; Haruta, M. Applied Catalysis A-General 1995, 102, 125.
5 Li, X.; Fu, J.; Steinhart, M.; Kim, D. H.; Knoll, W. Bull. Korean Chem. Soc. 2007, 28, 1015.   DOI   ScienceOn
6 Schmid, G. Chem. Rev. 1992, 92, 1709.   DOI
7 Jo, K.; Kang, H. J.; Yang, H. Bull. Korean Chem. Soc. 2011, 32, 728.   DOI   ScienceOn
8 Cheow, W. S.; Li, S.; Hadinoto, K. Chem. Eng. Res. & Design 2010, 88, 673.   DOI   ScienceOn
9 Chou, J.; McFarland, E. W. Chem. Commun. 2004, 14, 1648.
10 Dasog, M.; Scott, R. W. J. Langmuir 2007, 12, 3381.
11 Sandhyarani, N.; Pradeep, T. Chem. Phys. Lett. 2001, 338, 33.   DOI   ScienceOn
12 Brewer, N. J.; Rawsterne, R. E.; Kothari, S.; Leggett, G. J. J. Am. Chem. Soc. 2001, 123, 4089.   DOI   ScienceOn
13 Ducker, W. A.; Senden, T. J. Langmuir 1992, 8, 1831.   DOI
14 Binnig, G.; Quate, C.; Gerber, G. Phys. Rev. Lett. 1986, 56, 930.   DOI   ScienceOn
15 Murdoch, M.; Waterhouse, G. I. N.; Nadeem, M. A.; Metson, J. B.; Keane, M. A.; Howe, R. F.; Llorca, J.; Idriss, H. Nature Chemistry 2011, 3, 489.
16 Peter, A.; Baia, M.; Toderas, F.; Lazar, M.; Tudoran, L. B.; Danciu, V. Studia Universitatis Babes-bolyai Chemia 2009, 54, 161.
17 Pashley, R. M. J. Colloid Interface Sci. 1981, 83, 531.   DOI   ScienceOn
18 Kowalska, E.; Mahaney, O. O. P.; Abe, R.; Ohtani, B. J. Catalys. 2010, 12, 2344.
19 Ducker, W. A; Senden, T. J.; Pashley, R. M. Nature 1991, 353, 239.   DOI
20 Horn, R. G.; Smith, D. T.; Haller, W. Chem. Phys. Lett. 1989, 162, 404.   DOI   ScienceOn
21 Israelachvili, J. N.; Adams, G. E. J. Chem. Soc. Faraday Trans. 1978, 74, 975.   DOI
22 Derjaguin, B. V.; Landau, L. Acta Physiochem. 1941, 14, 633.
23 Cleveland, J. P.; Manne, S.; Bocek, D.; Hansma, P. K. Rev. Sci. Instrum. 1993, 64, 403.   DOI
24 Derjaguin, B. V. Trans. Faraday Soc. 1940, 36, 203.
25 Shuin, V.; Kekicheff, P. J. Colloid Interface Sci. 1993, 155, 108.   DOI   ScienceOn
26 Hartmann, U. Phys. Rev. B 1991, 43, 2404.   DOI   ScienceOn
27 Parker, J. L.; Christenson, H. K. J. Chem. Phys. 1988, 88, 8013.   DOI
28 O'Shea, S. J.; Welland, M. E.; Pethica, J. B. Chem. Phys. Lett. 1994, 223, 336.   DOI   ScienceOn
29 Derjaguin, B. V. Kolloid Z. 1934, 69, 155.   DOI
30 Israelachivili, J. N. Intermolecular & Surface Forces; Academic Press: New York, 1991; pp 183-188, 275-282.
31 Feiler, A.; Jenkins, P.; Ralston, J. Phys. Chem. Chem. Phys. 2000, 2, 5678.   DOI
32 Verwey, E. J. W.; Overbeek J. T. G. Theory of the Stability of Lyophobic Colloids; Elsevier: New York, 1948; pp 51-63.
33 Hogg, R.; Healy, T. W.; Fuerstenau, D. W. Trans. Faraday Soc. 1966, 62, 1638.   DOI
34 Hunter, R. J. Foundations of Colloid Science; Oxford University Press: Oxford, U.K., 1987; pp 397-409.
35 Chan, D. Y. C.; Pashley, R. M.; White, L. R. J. Colloild Interface Sci. 1980, 77, 283.   DOI   ScienceOn
36 Parker, J. L. Surf. Sci. 1994, 3, 205.
37 Park, J.-W.; Ahn, D. J. Colloids & Surf. B: Biointerf. 2008, 62, 157.   DOI   ScienceOn
38 Perlich, J.; Memesa, M.; Diethert, A.; Metwalli, E.; Wang, W.; Roth, S. V.; Timmann, A.; Gutmann, J. S.; Muller-Buschbauma, P. Chem. Phys. Chem. 2009, 10, 799.   DOI   ScienceOn
39 Naseri, N.; Amiri, M.; Moshfegh A. Z. J. Phys. D - Appl. Phys. 2010, 43, 105405.   DOI   ScienceOn