DOI QR코드

DOI QR Code

Surface Properties of Glutathione Layer Formed on Gold Surfaces Interacting with ZrO2

이산화지르코늄과 상호작용하는 금 표면 위의 글루타싸이온층 표면 물성

  • Park, Jin-Won (Department of Chemical and Biomolecular Engineering, College of Energy and Biotechnology, Seoul National University of Science and Technology)
  • 박진원 (서울과학기술대학교 에너지바이오대학 화공생명공학과)
  • Received : 2014.02.06
  • Accepted : 2014.03.31
  • Published : 2014.08.01

Abstract

It is investigated that that the physical properties of Glutathione layer formed on gold surfaces may make an effect on the distribution of either gold particle adsorbed to the $ZrO_2$ surface or vice versa with the adjustment of the electrostatic interactions. For the investigation, the atomic force microscope (AFM) was used to measure the surface forces between the surfaces as a function of the salt concentration and pH value. The forces were quantitatively analyzed with the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory to estimate the surface potential and charge density of the surfaces for each condition of salt concentration and pH value. The estimated-value dependence on the salt concentration was described with the law of mass action, and the pH dependence was explained with the ionizable groups on the surface. The salt concentration dependence of the surface properties, found from the measurement at pH 4 and 8, was consistent with the prediction from the law. It was found that the Glutathione layer had higher values for the surface charge densities and potentials than the zirconium dioxide surfaces at pH 4 and 8, which may be attributed to the ionized-functional-groups of the Glutathione layer.

이산화지르코늄 표면에 흡착되는 금 입자의 분포 또는 그 반대 경우의 분포에 영향을 끼칠 수도 있는 정전기적 상호작용과 금 입자를 코팅한 Glutathione층의 표면물성을 규명하였다. 이를 위하여, 원자힘현미경(AFM)으로 Glutathione 층 표면과 이산화지르코늄표면 사이의 표면힘을 염 농도와 pH 값에 따라 측정하였다. 측정된 힘은 Derjaguin-Landau-Verwey-Overbeek(DLVO) 이론으로 해석되어 표면의 전하밀도와 포텐셜들이 정량적으로 산출되었다. 이 특성들이 염 농도와 pH에 대하여 나타내는 의존성을 질량보존의 법칙으로 기술하였다. pH 8 조건에서 실험으로 산출된 표면 특성의 염 농도 의존성은 이론적으로 예측했던 결과와 일치하는 것으로 관찰되었다. Glutathione 층의 표면이 이산화지르코늄 표면보다 높은 전하밀도와 포텐셜을 갖는 것이 발견되었는데, 이는 Glutathione 층의 이온화-기능-그룹에 기인한 것으로 생각된다.

Keywords

References

  1. Soolaman, D. M. and Yu, H.-Z., "Monolayer-directed Electrodeposition of Oxide Thin Films: Surface Morphology Versus Chemical Modification," J. Phys. Chem. C, 111, 14157-14164(2007). https://doi.org/10.1021/jp071290+
  2. Hugon, A., Delannoy, L. and Louis, C., "Supported Gold Catalysts for Selective Hydrogenation of 1,3-butadiene in the Presence of An Excess of Alkenes," Gold Bull., 41, 127-138(2008). https://doi.org/10.1007/BF03216590
  3. Zhang, X., Shi, H. and Xu, B.-Q., "Vital Roles of Hydroxyl Groups and Gold Oxidation States in Au/$ZrO_2$ Catalysts for 1,3-butadiene Hydrogenation," J. Catal., 279, 75-87(2011). https://doi.org/10.1016/j.jcat.2011.01.002
  4. Wang, C.-M., Fan, K.-N. and Liu, Z.-P., "Origin of Oxide Sensitivity in Gold-Based Catalysts: A First Principle Study of CO Oxidation over Au Supported on Monoclinic and Tetragonal $ZrO_2$," J. Am. Chem. Soc., 129, 2642-2647(2007). https://doi.org/10.1021/ja067510z
  5. Kwak, J. H., Han, G. Y., Bae, J. W. and Yoon, K. J., "Tungsten Oxides Supported on Nano-size Zirconia for Cyclic Production of Syngas and Hydrogen by Redox Operations," Korean J. Chem. Eng., 1000, 1-11(2014).
  6. Kim, M.-Y., Seo, G., Park, J.-H., Shin, C.-H. and Kim, E. S., "Dispersion and Stability of Platinum Catalysts Supported on Titania-, Vanadia-, Zirconia- and Ceria-Incorporated Silicas," Korean Chem. Eng. Res., 49, 1-9(2011). https://doi.org/10.9713/kcer.2011.49.1.001
  7. Arrii, S., Morfin, F., Renouprez, A. J. and Rousset, J. L., "Oxidation of CO on Gold Supported Catalysts Prepared by Laser Vaporization: Direct Evidence of Support Contribution," J. Am. Chem. Soc., 126, 1199-1205(2004). https://doi.org/10.1021/ja036352y
  8. Zhang, X., Wang, H. and Xu, B. Q., "Remarkable Nanosize Effect of Zirconia in Au/$ZrO_2$ Catalyst for CO Oxidation," J. Phys. Chem. B, 109, 9678-9683(2005). https://doi.org/10.1021/jp050645r
  9. Kamat, P. V., "Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion," J. Phys. Chem. C, 111, 2834-2860(2007). https://doi.org/10.1021/jp066952u
  10. Valden, M., Lai, X. and Goodman, D. W., "Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties," Science, 281, 1647-1650(1998). https://doi.org/10.1126/science.281.5383.1647
  11. Sakurai, H., Tsubota, S. and Haruta, M., "Hydrogenation of $CO_2$ Over Gold Supported on Metal Oxides," Appl. Catal. A-General, 102, 125-136(1993). https://doi.org/10.1016/0926-860X(93)80224-E
  12. Li, X., Fu, J., Steinhart, M., Kim, D. H. and Knoll, W., "Au/titania Composite Nanoparticle Arrays with Controlled Size and Spacing by Organic-inorganic Nanohybridization in thin Film Block Copolymer Templates," Bull. Korean Chem. Soc., 28, 1015-1020(2007). https://doi.org/10.5012/bkcs.2007.28.6.1015
  13. Schmid, G., "Large Clusters and Colloids. Metals in the Embryonic State," Chem. Rev., 92, 1709-1727(1992). https://doi.org/10.1021/cr00016a002
  14. Noh, J., Park, H., Jeong, Y. and Kwon, S., "Structure and Electrochemical Behavior of Aromatic Thiol Self-Assembled Monolayers on Au(111)," Bull. Korean Chem. Soc., 27, 403-406(2006). https://doi.org/10.5012/bkcs.2006.27.3.403
  15. Dasog, M. and Scott, R. W. J., "Understanding the Oxidative Stability of Au MPCs in the Presence of Halide Ions Under Ambient Conditions," Langmuir, 12, 3381-3387(2007).
  16. Sandhyarani, N. and Pradeep, T., "Oxidation of Alkanethiol Monolayers on Gold Cluster Surface," Chem. Phys. Lett., 338, 33-36(2001). https://doi.org/10.1016/S0009-2614(01)00230-5
  17. Brewer, N. J., Rawsterne, R. E., Kothari, S. and Leggett, G. J., "Oxidation of Self-assembled Monolayers by UV Light with a Wavelength 254 nm," J. Am. Chem. Soc., 123, 4089-4090(2001). https://doi.org/10.1021/ja0155074
  18. Binnig, G., Quate, C. and Gerber, G., "Atomic Force Microscope," Phys. Rev. Lett., 56, 930-933(1986). https://doi.org/10.1103/PhysRevLett.56.930
  19. Derjaguin, B. V. and Landau, L., "The Theory of Stability of Highly Charged Lyophobic Sols and Coalescence of Highly Charged Particles in Electrolyte Solutions," Acta Physiochem. URSS, 14(11), 633-652(1941).
  20. Cleveland, J. P., Manne, S., Bocek, D. and Hansma, P. K., "A Nondestructive Method for Determining the Spring Constant of Cantilevers for Scanning Force Microscopy," Rev. Sci. Instrum., 64(2), 403-405(1993). https://doi.org/10.1063/1.1144209
  21. Derjaguin, B., "On the Repulsive Forces Between Charged Colloid Particles and on the Theory of Slow Coagulation and Stability of Lyophobe Sols," Trans. Faraday Soc., 35(3), 203-214(1940). https://doi.org/10.1039/tf9403500203
  22. Israelachvili, J. N. and Adams, G. E., "Measurement of Forces Between 2 Mica Surfaces in Aqueous-electrolyte Solutions in Range 0-100 nm," J. Chem. Soc. Faraday Trans., 74, 975-1001(1978). https://doi.org/10.1039/f19787400975
  23. Shubin, V. E. and Kekicheff, P., "Electrical Double-layer Structure Revisited Via a Surface Force Apparatus - Mica Interfaces In Lithium-nitrate Solutions," J. Colloid Interface Sci., 155(1), 108-123(1993). https://doi.org/10.1006/jcis.1993.1016
  24. Parker, J. L. and Christenson, H. K., "Measurements of the Forces Between a Metal-surface and Mica Across Liquids," J. Chem. Phys., 88(12), 8013-8014(1988). https://doi.org/10.1063/1.454260
  25. O'Shea, S. J., Welland, M. E. and Pethica, J. B., "Atomic-force Microscopy of Local Compliance at Solid-liquid Interfaces," Chem. Phys. Lett., 223(4), 336-340(1994). https://doi.org/10.1016/0009-2614(94)00458-7
  26. Derjaguin, B. V., "Analysis of Friction and Adhesion IV. The Theory of the Adhesion of Small Particles," Kolloid Z., 69(2), 155-164(1934). https://doi.org/10.1007/BF01433225
  27. Hartmann, U., "Van der Waals Interactions Between Sharp Probes and Flat Sample Surfaces," Phys. Rev. B, 43(3), 2404-2407(1991). https://doi.org/10.1103/PhysRevB.43.2404
  28. Israelachivili, J. N., Intermolecular & Surface Forces, Academic Press, New York, 183-192(1991).
  29. Shin, H., Agarwal, M., de Guire, M. R. and Heuer, A. H., "Deposition Mechanism of Oxide Thin Films on Self-assembled Organic Monolayers," Acta Mater., 46, 801-815(1998). https://doi.org/10.1016/S1359-6454(97)00258-9
  30. Verwey, E. J. W. and Overbeek, J. T. G., Theory of the Stability of Lyophobic Colloids, Elsevier, New York, 51-63(1948).
  31. Hogg, R., Healy, T. W. and Fuersten, D. W., "Mutual Coagulation of Colloidal Dispersions," Trans. Faraday Soc., 62(522P), 1638-1651(1966). https://doi.org/10.1039/tf9666201638
  32. Hunter, R. J., Foundations of Colloid Science, Oxford University Press, Oxford, U.K., 396-417(1987).
  33. Chan, D. Y. C., Pashley, R. M. and White L. R., "A Simple Algorithm for the Calculation of the Electrostatic Repulsion Between Identical Charged Surfaces in Electrolyte," J. Colloid Interface Sci., 77(1), 283-285(1980). https://doi.org/10.1016/0021-9797(80)90445-2
  34. Parker, J. L., "Surface Force Measurements in Surfactant Systems," Prog. Surf. Sci., 47(3), 205-271(1994). https://doi.org/10.1016/0079-6816(94)90019-1
  35. Park, J.-W. and Ahn, D. J., "Temperature Effect on Nanometerscale Physical Properties of Mixed Phospholipid Monolayers," Colloids & Surf. B: Biointerfaces, 62(1), 157-161(2008). https://doi.org/10.1016/j.colsurfb.2007.09.020
  36. Ducker, W. A., Senden, T. J. and Pashley, R. M., "Direct Measurement of Colloidal Forces Using An Atomic-force Microscope," Nature, 353(6341), 239-241(1991). https://doi.org/10.1038/353239a0
  37. Horn, R. G., Smith, D. T. and Haller, W., "Surface Forces and Viscosity of Water Measured Between Silica Sheets," Chem. Phys. Lett., 162(4-5), 404-408(1989). https://doi.org/10.1016/0009-2614(89)87066-6
  38. Choi, J. Y. and Kim, D. K., "Preparation of Monodisperse and Spherical Powders by Heating of Alcohol-Aqueous Salt Solution," J. Sol-Gel Sci. Tech., 15, 231-241(1999). https://doi.org/10.1023/A:1008737008988
  39. Schultz, M., Grimm, St. and Burckhardt, W., "The Isoelectric Point of Pure and Doped Zirconia in Relation to the Preparation Route," Solid States Ionics, 63-65, 18-24(1993). https://doi.org/10.1016/0167-2738(93)90080-M
  40. Pashley, R. M., "DLVO and Hydration Forces Between Mica Surfaces in $Li^+$, $Na^+$, $K^+$, and $Cs^+$ Electrolyte-solution - a Correlation of Double-layer and Hydration Forces with Surface Cation-exchange Properties," J. Colloid Interface Sci., 83(2), 531-546(1981). https://doi.org/10.1016/0021-9797(81)90348-9