• Title/Summary/Keyword: Global stability

Search Result 779, Processing Time 0.028 seconds

Evaluation of Water Supply Stability for Upland Crop in Reservoir Irrigation Districts Using Resilience Indexes (레질리언스 지표를 이용한 저수지 수혜구역의 전작농지 용수공급 안정성 평가)

  • Park, Jinseok;Jang, Seongju;Lee, Hyeokjin;Shin, Hyungjin;Chung, Soo;Song, Inhong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.1
    • /
    • pp.25-37
    • /
    • 2024
  • As the agricultural land use shifts from paddy to upland, ensuring reservoir water supply stability for upland crop irrigation becomes essential. The objectives of this study were to estimate the irrigation water requirements considering the upland irrigation scenario and to evaluate the reliability of the water supply from the agricultural reservoir using resilience indexes. Two study sites, Sinheung and Hwajeong, were selected, and soybean and red peppers, the most water-intensive crops, were selected as study crops, respectively. For the irrigation scenario, two irrigation methods of traditional scheduling (which irrigates all sites at once) and rotational scheduling (which distributes irrigation by districts), along with the upland conversion rate, were considered. The net irrigation requirement was estimated through a water balance analysis. The stability of the reservoir was evaluated using resilience indexes based on the simulated 10-years reservoir water levels and drought criterion. Overall, the water supply of the reservoir was evaluated as stable during the simulated 10 years, except for the one year. Compared to the two irrigation methods, rotational scheduling resulted in lower irrigation water usage in both sites, with reductions of 1.6%, and 0.3%, respectively. As the upland conversion rate increases, the water deficit could be intensified in Hwajeong with a conversion rate exceeding 50%, showing the number of deficit(ND) over the one and a rapid increase in the deficit ratio(DR). It was confirmed that the reservoir operation criteria can be enhanced by incorporating resilience indicators along with crop growth information, thus, this will be a further study.

Analysis on Failure Causes and Stability of Reinforced Earth Wall Based on a Field Case (현장사례를 이용한 보강토옹벽의 파괴원인 및 안정성 분석)

  • Hong, Kikwon;Han, Jung-Geun;Lee, Jong-Young;Park, Jai-Seok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.1
    • /
    • pp.109-114
    • /
    • 2013
  • This paper describes the global stability of the reinforced earth wall, which was collapsed by heavy rainfall. The seepage analysis was conducted to confirm the change effect of groundwater level on slope with reinforced earth wall. The seepage analysis result confirmed that the change of groundwater level is greatly influenced by rainfall. According to the change of groundwater level, the global stability analysis with reinforced earth wall was conducted based on the results of seepage analysis. The safety factor of the slope was 0.476 when the wall is collapsed firstly. The collapse cause analyzed that soil strength was weaken because the ground was saturated by continuous rainfall. Therefore, the global stability, which is considered heavy rainfall, should be conducted at design and construction of reinforced earth wall.

GLOBAL THRESHOLD DYNAMICS IN HUMORAL IMMUNITY VIRAL INFECTION MODELS INCLUDING AN ECLIPSE STAGE OF INFECTED CELLS

  • ELAIW, A.M.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.2
    • /
    • pp.137-170
    • /
    • 2015
  • In this paper, we propose and analyze three viral infection models with humoral immunity including an eclipse stage of infected cells. The incidence rate of infection is represented by bilinear incidence and saturated incidence in the first and second models, respectively, while it is given by a more general function in the third one. The neutralization rate of viruses is giv0en by bilinear form in the first two models, while it is given by a general function in the third one. For each model, we have derived two threshold parameters, the basic infection reproduction number which determines whether or not a chronic-infection can be established without humoral immunity and the humoral immune response activation number which determines whether or not a chronic-infection can be established with humoral immunity. By constructing suitable Lyapunov functions we have proven the global asymptotic stability of all equilibria of the models. For the third model, we have established a set of conditions on the threshold parameters and on the general functions which are sufficient for the global stability of the equilibria of the model. We have performed some numerical simulations for the third model with specific forms of the incidence and neutralization rates and have shown that the numerical results are consistent with the theoretical results.

GLOBAL EXISTENCE AND ASYMPTOTIC BEHAVIOR OF PERIODIC SOLUTIONS TO A FRACTIONAL CHEMOTAXIS SYSTEM ON THE WEAKLY COMPETITIVE CASE

  • Lei, Yuzhu;Liu, Zuhan;Zhou, Ling
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.5
    • /
    • pp.1269-1297
    • /
    • 2020
  • In this paper, we consider a two-species parabolic-parabolic-elliptic chemotaxis system with weak competition and a fractional diffusion of order s ∈ (0, 2). It is proved that for s > 2p0, where p0 is a nonnegative constant depending on the system's parameters, there admits a global classical solution. Apart from this, under the circumstance of small chemotactic strengths, we arrive at the global asymptotic stability of the coexistence steady state.

GLOBAL ATTRACTORS FOR NONLOCAL PARABOLIC EQUATIONS WITH A NEW CLASS OF NONLINEARITIES

  • Anh, Cung The;Tinh, Le Tran;Toi, Vu Manh
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.531-551
    • /
    • 2018
  • In this paper we consider a class of nonlocal parabolic equations in bounded domains with Dirichlet boundary conditions and a new class of nonlinearities. We first prove the existence and uniqueness of weak solutions by using the compactness method. Then we study the existence and fractal dimension estimates of the global attractor for the continuous semigroup generated by the problem. We also prove the existence of stationary solutions and give a sufficient condition for the uniqueness and global exponential stability of the stationary solution. The main novelty of the obtained results is that no restriction is imposed on the upper growth of the nonlinearities.

GLOBAL EXISTENCE AND ASYMPTOTIC BEHAVIOR OF A PLATE EQUATION WITH A CONSTANT DELAY TERM AND LOGARITHMIC NONLINEARITIES

  • Remil, Melouka
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.321-338
    • /
    • 2020
  • In this paper, we investigate the viscoelastic plate equation with a constant delay term and logarithmic nonlinearities. Under some conditions, we will prove the global existence. Furthermore, we use weighted spaces to establish a general decay rate of solution.

ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO 3D CONVECTIVE BRINKMAN-FORCHHEIMER EQUATIONS WITH FINITE DELAYS

  • Le, Thi Thuy
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.3
    • /
    • pp.527-548
    • /
    • 2021
  • In this paper we prove the existence of global weak solutions, the exponential stability of a stationary solution and the existence of a global attractor for the three-dimensional convective Brinkman-Forchheimer equations with finite delay and fast growing nonlinearity in bounded domains with homogeneous Dirichlet boundary conditions.

Novel Results for Global Exponential Stability of Uncertain Systems with Interval Time-varying Delay

  • Liu, Yajuan;Lee, Sang-Moon;Kwon, Oh-Min;Park, Ju H.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1542-1550
    • /
    • 2013
  • This paper presents new results on delay-dependent global exponential stability for uncertain linear systems with interval time-varying delay. Based on Lyapunov-Krasovskii functional approach, some novel delay-dependent stability criteria are derived in terms of linear matrix inequalities (LMIs) involving the minimum and maximum delay bounds. By using delay-partitioning method and the lower bound lemma, less conservative results are obtained with fewer decision variables than the existing ones. Numerical examples are given to illustrate the usefulness and effectiveness of the proposed method.

A study on relearning program of deep stabilizing muscle for low back pain (요통에 적용된 심부 안정근 재교육 프로그램에 관한 연구)

  • Koo, Hee-Seo;Kim, Soon-Ja
    • The Journal of Korean Physical Therapy
    • /
    • v.16 no.4
    • /
    • pp.11-22
    • /
    • 2004
  • The concept of segmental stabilization has been one of the most exciting advancements in the field of physical therapy. Specific deep stabilizing muscle have proven to reverse motor control deficits that occurs after back injury. After an injury, a new motor programming strategy is adopted and there is excessive recruitment of the large , strong , global muscular system works instead of small segmental deep muscle recruitment for stability. Many physical therapists and doctors mistakenly prescribe therapeutic exercise for low back pain to use larger, superficial musculature to strengthen the spine for stability and pain control. But motor control coordination of local segmental muscle is actually the key to stability and pain control, not strengthening of global muscle. A recent focus in physiotherapy management of patients with chronic back pain has been the specific training of muscles surrounding the lumbar spine whose primary role is considered to be the provision of dynamic stability and segmental control to the spine. These are the deep transverse abdominis muscle and lumbar multifudus.

  • PDF

GLOBAL ASYMPTOTIC STABILITY OF A HIGHER ORDER DIFFERENCE EQUATION

  • Hamza, Alaa E.;Khalaf-Allah, R.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.3
    • /
    • pp.439-445
    • /
    • 2007
  • The aim of this work is to investigate the global stability, periodic nature, oscillation and the boundedness of solutions of the difference equation $$x_{n+1}={\frac{Ax_{n-1}}{B+Cx_{n-2}{\iota}x_{n-2k}$$, n = 0, 1, 2,..., where A, B, C are nonnegative real numbers and $\iota$, k are nonnegative in tegers, $\iota{\leq}k$.