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Abstract. In this paper, we consider a two-species parabolic-parabolic-
elliptic chemotaxis system with weak competition and a fractional dif-

fusion of order s ∈ (0, 2). It is proved that for s > 2p0, where p0 is a

nonnegative constant depending on the system’s parameters, there ad-
mits a global classical solution. Apart from this, under the circumstance

of small chemotactic strengths, we arrive at the global asymptotic stabil-

ity of the coexistence steady state.

1. Introduction

In this paper, we investigate the following chemotaxis system with Lotka-
Volterra type competition and a fractional diffusion on two dimensional periodic
torus T2 = [−π, π]2:

(1.1)


ut = −Λsu− χ1∇ · (u∇w) + r1u(1− u− a1v), x ∈ T2, t > 0,

vt = −Λsv − χ2∇ · (v∇w) + r2v(1− v − a2u), x ∈ T2, t > 0,

0 = ∆w + αu+ βv − γw, x ∈ T2, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), x ∈ T2,

where u and v denote the densities of two species which interact with each other,
and w is the concentration of a chemoattractant. Furthermore, ri > 0, χi ≥
0, ai ∈ [0, 1), (i ∈ 1, 2) are used to denote the strengths of growth kinetics,
chemotaxis and competition for each species, respectively. In the meantime,
α, β > 0 denote the production of the chemoattractant by each species and
γ > 0 represents chemoattractant’s decay. Here we write Λs = (−∆)

s
2 with

Λ̂su(ξ) = |ξ|sû(ξ),
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where ·̂ denotes the usual Fourier transform, and the differential operator Λs

has the following kernel representation:

Λsf(x) = Cs, d P.V.

∫
Td

f(x)− f(y)

|x− y|d+s
dy+Cs, d

∑
k∈Zd, k 6=0

∫
Td

f(x)− f(y)

|x− y + 2kπ|d+s
dy,

where Cs, d =
2sΓ( d+s2 )

π
d
2

∣∣Γ(− s2 )
∣∣ > 0 is a normalization constant.

In the following of this introduction, we will discuss the inspirations and
reasons for studying this problem, and at last, the main conclusions are given.

1.1. Classical Keller-Segel system. For one single species, the original
chemotaxis model was proposed by Keller and Segel (see [27, 28]). Tello and
Winkler [40] considered the following parabolic-elliptic Keller-Segel system with
a logistic source:

(1.2)

{
ut = ∆u− χ∇ · (u∇v) + f(u), x ∈ Ω, t > 0,

0 = ∆v − v + u, x ∈ Ω, t > 0.

In biology, u is the bacterial density, v is the concentration of a chemoattrac-
tant, and χ denotes the chemotactic sensitivity coefficient. Meanwhile, the
bacteria u has the ability to move in the direction of higher concentration of
chemoattractant v. f(u) = ru(1 − u) is the logistic source in literature and
Ω ⊂ Rn is a bounded domain with a smooth boundary. In the last decades,
scientists have done extensive research for the system (1.2) and its generaliza-
tions. What concern scientists most is the existence of global solutions or the
occurrence of a blowup at a finite time, and the asymptotic behavior of global
solutions was also considered. It is proved in [40] that for dimensions n ≤ 2
or r > n−2

n χ, there admits a global bounded classical solution which is unique.
That is, for a sufficient large r, the logistic term might suppress the occurrence
of a blowup in some way. The correlative literatures are rich, readers can refer
to the surveys [26,30,34,44,45] for a detail study.

1.2. Derivation of our problem. Notice that there are two differences
between our system and the parabolic-elliptic Keller-Segel model (1.2): one is
the fractional diffusion and another is the bispecies competition term. Hence
we are going to introduce the motivations for these two differences. At the
same time, we will state some previous results that inspired our interests of the
problem (1.1).

1.2.1 Motivation for the fractional diffusion. Since the 1990’s, with the devel-
opment of research, it is found that the behaviors of many creatures in nature
are not completely suitable to be described by the classical chemotactic model.
For example, it is proved by Carfinkel [15] that the movement of mesenchymal
cells due to the attraction of a certain chemical substance does not conform to
the classical chemotactic model. For a stronger theoretical and more empirical
evidence, Escudero [18] improved the classical chemotaxis model and replaced
the classical Laplace diffusion with a fractional one in Keller-Segel system:
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Λs, 0 < s < 2. (When s = 1, Λ1 = (−∆)
1
2 , particularly, −∆ = Λ2.) That

is, using levy flight instead of Brownian motion to describe the spread of cells.
By this way, a large number of phenomena in nature are better modelled, the
interested readers can refer to [2, 9, 11, 25, 38, 42, 43, 49] for a more exhaustive
discussion.

Let us mainly recall the fractional parabolic-elliptic Keller-Segel system with
a logistic source:

(1.3)

{
ut = −Λsu− χ∇ · (u∇v) + au− bu2, x ∈ Rn, t > 0,

0 = ∆v − v + u, x ∈ Rn, t > 0.

Because −Λsu provides a weaker dissipation than the standardized one for
s < 2, it is more possible for the occurrence of a blowup, we can consult [3,6,7]
by Biler and collaborators, as well as [33–36] by Li and Rodrigo for more
results in the case of generic fractional parabolic-elliptic system. Recalling the
suppression of a logistic source, it is more significant to consider the combined
effect of fractional diffusion and logistic term incorporated in (1.3). For this
question, Zhang systematically studied the global existence and the asymptotic
behavior of classical solutions of the problem (1.3) in [48], it is proved that for
positive initial data u0 ∈ Cbunif (Rn) and s ∈ ( 1

2 , 1), if χ ≤ b, there admits a

unique global classical solution (u, v) which is bounded for χ < b. Furthermore,
for b > 2χ:

u(t)→ a

b
and v(t)→ a

b
as t→∞.

Burczak and Granero-Belinchón came up with a series of results on periodic
torus. [11] proved that for any initial data and any positive time, the so-
lutions of parabolic-elliptic Keller-Segel system on S1 with critical fractional
diffusion (−∆)

1
2 remain smooth. For one-dimensional case, [12] showed the

global existence of classical solutions under the condition of c1 < s ≤ 2, where
the nonnegative constant c1 is a specific constant related to the coefficients of
problem. When the spatial dimension n = 2, for c2 < s < 2, where c2 ∈ (0, 2)
depends on the parameters of system, the global existence of the regular solu-
tions was obtained in [13]. For d-dimensional (d = 1, 2) case, [10] obtained the
uniform in time boundedness of solutions for s > d(1− c3), where c3 is an ex-
plicit constant relying on the parameters of problem. Meanwhile, the stability
of the homogeneous solutions was also considered by [14].

1.2.2 Motivation for the bispecies competition terms. The biological activities
of individual species have been well modelled by Keller and Segel. But most
species in nature interact with one another to survive. One of the simplest but
most representative case is the interaction of two species and their surround-
ings. Similar to the single-species chemotactic model, for the multi-species
model, the occurrence of a blowup and global existence of solutions are mainly
concerned in [4,5,17,22,29,32]. The pure two-species chemotaxis model without
competition term or logistic source was introduced by [46], and for the qualita-
tive features of solutions, there are many colorful results in the bispecies case
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[19–21]. Moreover, the long-term behavior of global solutions was also studied
in [31,39,47].

The two-species chemotaxis model with Lotka-Volterra type competition
and classical diffusion was first introduced by Tello and Winker in [41]:

(1.4)



ut = d1∆u− χ1∇ · (u∇w) + r1u(1− u− a1v), x ∈ Ω, t > 0,

vt = d2∆v − χ2∇ · (v∇w) + r2v(1− v − a2u), x ∈ Ω, t > 0,

0 = d3∆w + αu+ βv − γw, x ∈ Ω, t > 0,

∇u · ν = ∇v · ν = ∇w · ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), x ∈ Ω,

where the nonnegative constants d1, d2 and d3 denote the diffusion rates of
species and chemoattractant, respectively. In [41], it is showed the global exis-
tence and the asymptotic stability of solutions under the conditions that

2(χ1 + χ2) + a1r2 < r1 and 2(χ1 + χ2) + a2r1 < r2.

Black, Lankeit and Mizukami improved the conditions and came to the same
conclusion in [8]. Assume q1 := χ1

r1
, q2 := χ2

r2
satisfy the conditions

(1.5)
q1 ∈ [0,

d3

2α
) ∩ [0,

a1d3

β
), q2 ∈ [0,

d3

2β
) ∩ [0,

a2d3

α
) and

a1a2d
2
3 < (d3 − 2αq1)(d3 − 2βq2),

then there exists a unique global classical positive solution (u, v, w) from non-
negative functions u0, v0 ∈ C(Ω̄) with the following asymptotic behaviour:

u(t)→ u∗, v(t)→ v∗ and w(t)→ αu∗ + βv∗

γ
as t→∞

uniformly in Ω, where

u∗ =
1− a1

1− a1a2
and v∗ =

1− a2

1− a1a2
.

Inspired by [8] and [13], in this paper, we consider a fractional chemotaxis
system with Lotka-Volterra type competition on two dimensional periodic torus
T2. This system is a generalization of the model (1.4). We study the fractional
Laplace diffusion of species, which is more consistent with biological behaviors
than classical Laplace diffusion. The problem (1.1) describes the dynamical be-
havior of two competitive species attracted by the same chemical signal more
precisely. What interested us are whether the problem (1.1) can achieve co-
existence steady state and the required conditions. We will study the global
existence of classical solutions for s > 2p0, where p0 is a nonnegative constant
to be fixed later. Due to the influence of fractional diffusion, the global exis-
tence of the solution to the problem (1.1) is different from the classical proof in
the model (1.4). We will use the properties of the fractional diffusion and the
periodic domain to prove it with a different method under different conditions,
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the specific process has been given in Section 4. Furthermore, only by obtain-
ing the global existence can we further consider the global asymptotic stability
of the solution. Here are our main results.

Theorem 1.1. Let u0, v0 ∈ H4(T2) be nonnegative initial data and T be any
positive number. If

(1.6) 2 > s > 2p0,

where

(1.7) p0 =max
{ (αχ1 − r1)+

αχ1
,

(βχ1 − a1r1)+

βχ1
,

(βχ2 − r2)+

βχ2
,

(αχ2 − a2r2)+

αχ2

}
,

then the problem (1.1) admits a global nonnegative classical solution

(u, v, w) ∈ C([0, T );H4(T2)) ∩ C2,1(T2 × [0, T )).

Remark 1. For the sake of simplicity, we only consider two-dimensional case.

For d-dimensional, we have the same conclusion in H3+[ d2 ]+(T2), where [·]+
denotes the integer operator.

Compared with [8], we do not need the parameters of the equation to meet
the smallness condition on the relative chemotactic strength (1.5) (see [8]), but
only add the condition (1.6) to the order s in the problem (1.1). Moreover, the
range of parameters in the problem (1.1) are expanded. (1.7) gives the sufficient
condition for the chemotaxis, logistic, competition and growth terms to prevent
blowups from occurring. When the logistic terms r1, r2 and the competition
terms a1, a2 are sufficiently large, while the chemotaxis terms χ1, χ2 and the
production terms α, β are sufficiently small, the condition (1.6) is automatically
satisfied. Under these assumptions, the global existence of the solution is also
proved.

Theorem 1.2. Assume that the parameters satisfy

(1.8)

χ1

r1
∈ [0,

1

2α
) ∩ [0,

a1

β
),
χ2

r2
∈ [0,

1

2β
) ∩ [0,

a2

α
) and

a1a2 < (1− 2αχ1

r1
)(1− 2βχ2

r2
).

Then for any 0 < s < 2, the unique global classical solution (u, v, w) of (1.1)
possesses the following asymptotic behavior:

u(t)→ u∗, v(t)→ v∗ and w(t)→ αu∗ + βv∗

γ
as t→∞

uniformly in T2, where

u∗ =
1− a1

1− a1a2
and v∗ =

1− a2

1− a1a2
.

Remark 2. Notice that when (1.8) in Theorem 1.2 is satisfied, p0 defined in
(1.7) is zero. Thus the problem (1.1) admits a global classical solution for any
0 < s < 2.
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The rest of this paper is formed as follows. In Section 2, we introduce some
preliminary notations and function spaces as well several elementary lemmas
which are required for the proof of our main conclusions. In Section 3, we
give some auxiliary results and energy estimates. Taking advantage of these
statements, we will prove Theorem 1.1 and Theorem 1.2 in Section 4 and
Section 5, respectively.

2. Preliminary

In this section, we will give some symbols which are used extensively in this
paper.

We write ∂n for n ∈ Z+ by a generic derivative of order n, and define the
fractional Lp-based Sobolev spaces W s, p(Td) as

W s, p(Td)=
{
f ∈Lp(Td) | ∂bscf ∈Lp(Td), |∂

bscf(x)−∂bscf(y)|
|x−y|

d
p+(s−bsc)

∈ Lp(Td×Td)
}
,

with the norm

||f ||pW s, p = ||f ||pLp + ||f ||p
Ẇ s, p

and

||f ||p
Ẇ s, p

= ||∂bscf ||pLp +

∫
Td

∫
Td

|∂bscf(x)− ∂bscf(y)|p

|x− y|d+(s−bsc)p dxdy.

In the case p = 2, we denote Hs(Td) , W s, 2(Td) for the standard non-
homogeneous Sobolev space endowed with the norm

||f ||2Hs = ||f ||2L2 + ||f ||2
Ḣs

and ||f ||Ḣs = ||Λsf ||L2 .

Before giving the proof of our main results, we first introduce several ele-
mentary lemmas which will be needed later. Their proofs are classic, so we
omit them here, those who are interested can consult to the relevant reference.

Lemma 2.1 ([13, 16, 37], Stroock-Varopoulos inequality). Let m > 0, 0 <
s < 2 and d ≥ 1. Then for a sufficiently smooth u ≥ 0 (u ∈ L∞(Td) ∩
Hs(Td) is enough) it holds

(2.1)
4m

(1 +m)2

∫
Td
|Λ s

2 (u
m+1

2 )|2 ≤
∫
Td
umΛsu.

Lemma 2.2 ([1, 12, 14, 23]). Let h ∈ C2(Td) be a function. Assume that
h(x∗) := maxx h(x) > 0. Then there exist two constants Mi(d, p, s), i = 1, 2
such that either

(2.2) M1(d, p, s)‖h‖Lp ≥ h(x∗),

or

(2.3) Λsh(x∗) ≥M2(d, p, s)
h(x∗)1+ sp

d

‖h‖
sp
d

Lp

,
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with

M1(d, p, s) =
( π

d
2

21+p

∫ ∞
0

z
d
2 e−zdz

) 1
p

and

M2(d, p, s) = εd,s

(
π
d
2∫∞

0
z
d
2 e−zdz

)1+ s
d

4 · 2
(p+1)s
d

, εd,s = 2
(∫

Rd

4 sin2(x1

2 )

|x|d+s
dx
)−1

.

3. Auxiliary results

At first, we obtain the local existence of classical solutions with a continua-
tion criterion for the problem (1.1). Then we give some needed energy estimates
which are necessary later. Finally, a standard extension criterion provides con-
venience for the proof of Theorem 1.1.

Lemma 3.1 (Local existence). Assume u0, v0 ∈ H4(T2) are nonnegative ini-
tial data and 0 < s < 2. Then there exists a time 0 < Tmax(u0, v0) ≤ ∞
such that there admits a nonnegative solution (u, v, w) on T2× [0, Tmax(u0, v0))
which belongs to

C([0, Tmax(u0, v0));H4(T2)) ∩ C2,1(T2 × [0, Tmax(u0, v0))).

Moreover, if Tmax(u0, v0) < +∞, then

||u(·, t)||H4 + ||v(·, t)||H4 →∞ as t↗ Tmax(u0, v0)

is fulfilled.

Proof. Part 1. (a priori estimates) Testing the first equation of (1.1) with
u, we obtain∫

T2

uut = −
∫
T2

uΛsu− χ1

∫
T2

u∇ · (u∇w) + r1

∫
T2

u2(1− u− a1v)

= −
∫
T2

|Λ s
2u|2 + I1 + I2.

(3.1)

Integrating by parts for the term I1 yields

(3.2) I1 = χ1

∫
T2

u∇w · ∇u =
χ1

2

∫
T2

∇w · ∇u2 = −χ1

2

∫
T2

u2∆w,

using the Sobolev embedding Hk(T2) ⊂ L∞(T2) for k > 1 and the third
equation of (1.1), we get

(3.3)

I1 ≤ C‖∆w‖L∞‖u‖2L2

≤ C‖w‖H4‖u‖2H4

≤ C(‖u‖H2 + ‖v‖H2)‖u‖2H4

≤ C(‖u‖H4 + ‖v‖H4)‖u‖2H4 .
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Here and thereafter, we denote C by a general constant. And for the term I2,
we obviously have

(3.4) I2 ≤ r1(1 + ‖u‖L∞ + a1‖v‖L∞)‖u‖2L2 ≤ C(1 + ‖u‖H4 + ‖v‖H4)‖u‖2H4 .

Plugging (3.3) and (3.4) into (3.1), we obtain

(3.5)
1

2

d

dt
‖u‖2L2 ≤ C(1 + ‖u‖H4 + ‖v‖H4)‖u‖2H4 .

Taking the fourth derivative with respect to x on both side of the first equation
of (1.1) and testing it with ∂4

xu, we get

(3.6)

∫
T2

∂4
xu∂

4
xut = −

∫
T2

∂4
xu∂

4
xΛsu− χ1

∫
T2

∂4
xu∂

4
x∇ · (u∇w)

+ r1

∫
T2

∂4
xu∂

4
x[u(1− u− a1v)]

= −
∫
T2

|Λ s
2 ∂4
xu|2 + I3 + I4.

Taking advantage of Leibniz’ formula and the third equation of (1.1), we have

(3.7)

I3 = − χ1

∫
T2

∂4
xu∂

4
x(∇u · ∇w)− χ1

∫
T2

∂4
xu∂

4
x(u∆w)

= − χ1

∫
T2

∂4
xu∂

4
x∇u · ∇w − 4χ1

∫
T2

∂4
xu∂

3
x∇u · ∂x∇w

− 6χ1

∫
T2

∂4
xu∂

2
x∇u · ∂2

x∇w − 4χ1

∫
T2

∂4
xu∂x∇u · ∂3

x∇w

− χ1

∫
T2

∂4
xu∇u · ∂4

x∇w − γχ1

∫
T2

∂4
xu∂

4
x(uw)

+ αχ1

∫
T2

∂4
xu∂

4
x(u2) + βχ1

∫
T2

∂4
xu∂

4
x(uv)

:= I1
3 + I2

3 + I3
3 + I4

3 + I5
3 + I6

3 + I7
3 + I8

3.

For the term I1
3, integrating by parts yields

(3.8) I1
3 = −χ1

2

∫
T2

∇(∂4
xu)2 · ∇w =

χ1

2

∫
T2

(∂4
xu)2∆w,

by (3.3), we obtain

(3.9) I1
3 ≤

χ1

2
‖∆w‖L∞‖∂4

xu‖2L2 ≤ C(‖u‖H4 + ‖v‖H4)‖u‖2H4 .

By Hölder’s inequality and the Sobolev embedding theorem, as well the third
equation of (1.1), the terms I2

3, I3
3, I4

3 and I5
3 are controlled by

(3.10) I2
3 ≤ 4χ1‖∆w‖L∞‖∂4

xu‖2L2 ≤ C(‖u‖H4 + ‖v‖H4)‖u‖2H4 ,
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(3.11)

I3
3 ≤ 6χ1‖∂x∆w‖L∞‖∂4

xu‖L2‖∂2
x∇u‖L2

≤ C(‖∂xw‖L∞ + ‖∂xu‖L∞ + ‖∂xv‖L∞)‖u‖H4‖u‖H3

≤ C(‖w‖H4 + ‖u‖H4 + ‖v‖H4)‖u‖2H4

≤ C(‖u‖H4 + ‖v‖H4)‖u‖2H4 ,

(3.12)

I4
3 ≤ 4χ1‖∂x∇u‖L∞‖∂4

xu‖L2‖∂3
x∇w‖L2

≤ C‖u‖2H4‖w‖H4

≤ C(‖u‖H4 + ‖v‖H4)‖u‖2H4

and

(3.13)

I5
3 ≤ χ1‖∇u‖L∞‖∂4

xu‖L2‖∂4
x∇w‖L2

≤ C‖u‖2H4‖w‖H5

≤ C(‖u‖H3 + ‖v‖H3)‖u‖2H4

≤ C(‖u‖H4 + ‖v‖H4)‖u‖2H4 .

Making use of Leibniz’ formula, Hölder’s inequality and the Sobolev embedding
H4(T2) ⊂W 2,∞(T2), the terms I6

3, I7
3 and I8

3 are estimated by

(3.14)

I6
3 = − γχ1

∫
T2

∂4
xu∂

4
xuw − 4γχ1

∫
T2

∂4
xu∂

3
xu∂xw

− 6γχ1

∫
T2

∂4
xu∂

2
xu∂

2
xw − 4γχ1

∫
T2

∂4
xu∂xu∂

3
xw

− γχ1

∫
T2

∂4
xuu∂

4
xw

≤ γχ1‖w‖L∞‖∂4
xu‖2L2 + 4γχ1‖∂xw‖L∞‖∂4

xu‖L2‖∂3
xu‖L2

+ 6γχ1‖∂2
xw‖L∞‖∂4

xu‖L2‖∂2
xu‖L2

+ 4γχ1‖∂xu‖L∞‖∂4
xu‖L2‖∂3

xw‖L2

+ γχ1‖u‖L∞‖∂4
xu‖L2‖∂4

xw‖L2

≤ C‖u‖2H4‖w‖H4

≤ C(‖u‖H4 + ‖v‖H4)‖u‖2H4 ,

(3.15)

I7
3 = 2αχ1

∫
T2

∂4
xuu∂

4
xu+ 8αχ1

∫
T2

∂4
xu∂xu∂

3
xu+ 6αχ1

∫
T2

∂4
xu∂

2
xu∂

2
xu

≤ 2αχ1‖u‖L∞‖∂4
xu‖2L2 + 8αχ1‖∂xu‖L∞‖∂4

xu‖L2‖∂3
xu‖L2

+ 6αχ1‖∂2
xu‖L∞‖∂4

xu‖L2‖∂2
xu‖L2

≤ C‖u‖H4‖u‖2H4
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and

(3.16)

I8
3 = βχ1

∫
T2

∂4
xu∂

4
xuv + 4βχ1

∫
T2

∂4
xu∂

3
xu∂xv + 6βχ1

∫
T2

∂4
xu∂

2
xu∂

2
xv

+ 4βχ1

∫
T2

∂4
xu∂xu∂

3
xv + βχ1

∫
T2

∂4
xuu∂

4
xv

≤ βχ1‖v‖L∞‖∂4
xu‖2L2 + 4βχ1‖∂xv‖L∞‖∂4

xu‖L2‖∂3
xu‖L2

+ 6βχ1‖∂2
xv‖L∞‖∂4

xu‖L2‖∂2
xu‖L2

+ 4βχ1‖∂xu‖L∞‖∂4
xu‖L2‖∂3

xv‖L2 + βχ1‖u‖L∞‖∂4
xu‖L2‖∂4

xv‖L2

≤ C‖v‖H4‖u‖2H4 .

Plugging (3.9)–(3.16) into (3.7), we obtain

(3.17) I3 ≤ C(‖u‖H4 + ‖v‖H4)‖u‖2H4 .

As for the term I4, by (3.15) and (3.16), we have

I4 = r1

∫
T2

∂4
xu∂

4
xu− r1

∫
T2

∂4
xu∂

4
x(u2)− a1r1

∫
T2

∂4
xu∂

4
x(uv)

≤ r1‖∂4
xu‖2L2 + C‖u‖H4‖u‖2H4 + C‖v‖H4‖u‖2H4

≤ C(1 + ‖u‖H4 + ‖v‖H4)‖u‖2H4 .

(3.18)

Inserting (3.17) and (3.18) into (3.6), we conclude

(3.19)
1

2

d

dt
‖∂4
xu‖2L2 ≤ C(1 + ‖u‖H4 + ‖v‖H4)‖u‖2H4 .

Similarly, we can obtain

(3.20)
1

2

d

dt
‖∂kxu‖2L2 ≤ C(1 + ‖u‖H4 + ‖v‖H4)‖u‖2H4 for k = 1, 2, 3.

Thus, we have

(3.21)
1

2

d

dt
‖u‖2H4 =

1

2

d

dt
(

4∑
k=0

‖∂kxu‖2L2) ≤ C(1 + ‖u‖H4 + ‖v‖H4)‖u‖2H4 ,

i.e.,

(3.22)
d

dt
‖u‖H4 ≤ C(1 + ‖u‖H4 + ‖v‖H4)‖u‖H4 .

As for the second equation in (1.1), in the same way, we can get

(3.23)
d

dt
‖v‖H4 ≤ C(1 + ‖u‖H4 + ‖v‖H4)‖v‖H4 .

Combining (3.22) with (3.23), we finally arrive at

(3.24)
d

dt
(‖u‖H4 + ‖v‖H4) ≤ C(1 + ‖u‖H4 + ‖v‖H4)2.
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By a comparison theorem, we obtain

(3.25) ‖u‖H4 + ‖v‖H4 + 1 ≤ ‖u0‖H4 + ‖v0‖H4 + 1

1− C(‖u0‖H4 + ‖v0‖H4 + 1)t
.

Part 2. (Existence) As for the existence of smooth solutions to the problem
(1.1), the proof is classic, we can refer to the proof of Theorem 1 of [1] and
the proof of Theorem 1 of [24]. Let us consider a nonnegative function J ∈
C∞0 , J (x) = J (|x|) with

∫
R2 J = 1. For ε > 0, we define the mollifiers Jε =

1
ε2J (xε ) and the regularized initial data uε(x, 0) = Jε ∗ u0(x) ≥ 0, vε(x, 0) =
Jε ∗ v0(x) ≥ 0, wε(x, 0) = Jε ∗ w0(x) ≥ 0. By Tonelli’s Theorem, we have
‖Jε ∗ u0(x)‖L1 = ‖u0‖L1 . Polishing both side of the equations of the problem
(1.1), we can get the regularized problem

(3.26)



∂tu
ε = − Jε ∗ Λs(Jε ∗ uε)− χ1Jε ∗ ∇ · (Jε ∗ uε∇(Jε ∗ wε))

+ r1u
ε(1− uε − a1v

ε),

∂tv
ε = − Jε ∗ Λs(Jε ∗ vε)− χ2Jε ∗ ∇ · (Jε ∗ vε∇(Jε ∗ wε))

+ r2v
ε(1− vε − a2u

ε),

0 = ∆wε + αuε + βvε − γwε.

In the approximate problem (3.26), we use Picard-Lindelöf Existence-Uniq-
ueness Theorem in H4 ×H4 ×H6. Define the set

Oµν = {u, v ∈ H4(T2), ‖u‖H4 + ‖v‖H4 < µ, ‖u‖W 2,∞ + ‖v‖W 2,∞ < ν},

with ‖u0‖H4 + ‖v0‖H4 < µ and ‖u0‖W 2,∞ + ‖v0‖W 2,∞ < ν. Due to the Sobolev
embedding H4(T2) ⊂W 2,∞(T2) are continuous functionals, Oµν is a non-empty
open set in H4(T2), so ‖u‖H4+‖v‖H4 is bounded in this set. By Picard-Lindelöf
Existence-Uniqueness Theorem, we can prove that the regularized problem
admits smooth solutions sequence (uε, vε, wε), and these solutions satisfy the
same energy estimates in the last part, so the solutions exist in the same time
interval [0, T (u0, v0)]. Furthermore, by the iterative method we know that the
sequence (uε, vε) is a Cauchy sequence in C([0, T ], Hs) for 0 ≤ s < 4 with T =
T (u0, v0) ≤ 1

C(‖u0‖H4+‖v0‖H4+1) . Thus, it admits a limit (u, v) which is a smooth

solution to our problem. Furthermore we have u, v ∈ H4, because uε, vε are
uniformly bounded in H4 which implies uε and vε are weakly convergent to u
and v, respectively in H4.

Part 3. (Uniqueness) We argue by contradiction in order to show the
uniqueness of solutions to our problem. Assume that for the same initial
data (u0, v0, w0) ∈ H4 × H4 × H6, we have two different solutions written
by (u1, v1, w1) and (u2, v2, w2). Then the system for (ū, v̄, w̄) = (u1 − u2, v1 −
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v2, w1 − w2) is

(3.27)



∂tū = − Λsū− χ1∇ · (ū∇w1 + u2∇w̄) + r1ū

− r1ū(u1 + u2)− a1r1(ūv1 + u2v̄),

∂tv̄ = − Λsv̄ − χ2∇ · (v̄∇w1 + v2∇w̄) + r2v̄

− r2v̄(v1 + v2)− a2r2(ūv1 + u2v̄),

0 = ∆w̄ + αū+ βv̄ − γw̄,
ū(x, 0) = 0, v̄(x, 0) = 0, w̄(x, 0) = 0.

Testing the first equation of (3.27) with ū, we can obtain

(3.28)

∫
T2

ūūt = −
∫
T2

ūΛsū− χ1

∫
T2

ū∇ · (ū∇w1)− χ1

∫
T2

ū∇ · (u2∇w̄)

+ r1

∫
T2

ū2 − r1

∫
T2

ū2(u1 + u2)− a1r1

∫
T2

ū(ūv1 + u2v̄)

= −
∫
T2

|Λ s
2 ū|2 + II1 + II2 + II3 + II4 + II5.

Integrating twice by parts for the term II1, we have

(3.29) II1 = χ1

∫
T2

ū∇w1 · ∇ū =
χ1

2

∫
T2

∇w1 · ∇(ū2) = −χ1

2

∫
T2

ū2∆w1,

and Hölder’s inequality yields

(3.30) II1 ≤
χ1

2
‖∆w1‖L∞‖ū‖2L2 ≤ C‖ū‖2L2 .

By Hölder’s inequality and the third equation of (3.27), we immediately obtain
the estimates of the remaining parts

II2 = −χ1

∫
T2

ū∇u2 · ∇w̄ − χ1

∫
T2

ūu2∆w̄

≤ χ1‖∇u2‖L∞‖ū‖L2‖∇w̄‖L2 + χ1‖u2‖L∞‖ū‖L2‖∆w̄‖L2

≤ C‖ū‖L2‖w̄‖H2

≤ C‖ū‖L2(‖ū‖L2 + ‖v̄‖L2),

(3.31)

(3.32) II3 = r1‖ū‖2L2 ,

(3.33) II4 ≤ r1(‖u1‖L∞ + ‖u2‖L∞)‖ū‖2L2 ≤ C‖ū‖2L2

and

II5 = −a1r1

∫
T2

v1ū
2 − a1r1

∫
T2

u2ūv̄

≤ a1r1‖v1‖L∞‖ū‖2L2 + a1r1‖u2‖L∞‖ū‖L2‖v̄‖L2

≤ C(‖ū‖L2 + ‖v̄‖L2)‖ū‖L2 .

(3.34)
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Plugging (3.30)–(3.34) into (3.28), we arrive at

(3.35)
1

2

d

dt
‖ū‖2L2 ≤ C(‖ū‖L2 + ‖v̄‖L2)‖ū‖L2 ,

i.e.,

(3.36)
d

dt
‖ū‖L2 ≤ C(‖ū‖L2 + ‖v̄‖L2).

As for the second equation of (3.27), in the same way, we have

(3.37)
d

dt
‖v̄‖L2 ≤ C(‖ū‖L2 + ‖v̄‖L2).

Combining (3.36) with (3.37), we obtain

(3.38)
d

dt
(‖ū‖L2 + ‖v̄‖L2) ≤ C(‖ū‖L2 + ‖v̄‖L2).

Hence the Gronwall’s inequality immediately yields

(3.39) ‖ū‖L2 + ‖v̄‖L2 ≤ (‖ū(x, 0)‖L2 + ‖v̄(x, 0)‖L2)eCt.

From the last inequality we can obtain the uniqueness of solutions.

Part 4. (Positivity) We will show that we can obtain a nonnegative solution
from nonnegative initial data to complete the proof of Lemma 3.1.

Let (u, v, w) be a smooth solution with nonnegative initial data and denote

u(t) = min
x∈T2

u(x, t) = u(xt, t), v = min
x∈T2

v(x, t) = v(xt∗ , t∗) and

w = min
x∈T2

w(x, t) = w(xt∗ , t
∗).

Evaluating the first equation of (1.1) at the minimum point of u and using the
kernel expression for Λs as well the equation of w, we have

d

dt
u(t) = −Λsu(xt, t)− χ1u∆w(xt, t) + r1u(1− u− a1v(xt, t))

≥ u(t)
[
r1 + (αχ1 − r1)u+ (βχ1 − a1r1)v(xt, t)− γχ1w(xt, t)

]
.

(3.40)

By a comparison theorem, we obtain

(3.41)
u(xt, t) ≥ u0(x) exp

(∫ t

0

[
r1 + (αχ1 − r1)u(xs, s)

+ (βχ1 − a1r1)v(xs, s)− γχ1w(xs, s)
]
ds
)
.

Thus,
u ≥ 0

since u0(x) ≥ 0. As for the positivity of v, making through the same part of
the procedure for the second equation of (1.1), we can get

v ≥ 0

because of v0(x) ≥ 0. Using the third equation of (1.1), we have

γw = αu(xt∗ , t
∗) + βv(xt∗ , t

∗) ≥ αu+ βv ≥ 0.
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Since then, we have completed the proof of Lemma 3.1. �

Lemma 3.2 (Weak estimates). Let 0 < T <∞ be arbitrary and (u, v, w) be a
nonnegative solution to (1.1). Take any m > 0 such that

(m+ 1)(αχ1 − r1) ≤ αχ1, (m+ 1)(βχ1 − a1r1) ≤ βχ1,

(m+ 1)(βχ2 − r2) ≤ βχ2 and (m+ 1)(αχ2 − a2r2) ≤ αχ2.
(3.42)

Then for any t ∈ [0, T ], it holds

(3.43)

sup
t∈[0,T ]

‖u(t)‖Lm+1 ≤ er1T ‖u0‖Lm+1 and

sup
t∈[0,T ]

‖v(t)‖Lm+1 ≤ er2T ‖v0‖Lm+1 .

Proof. Testing the first equation of (1.1) with um, we can get

(3.44)

∫
T2

umut = −
∫
T2

umΛsu− χ1

∫
T2

um∇ · (u∇w)

+ r1

∫
T2

um+1(1− u− a1v).

Integrating by parts yields

(3.45)

1

m+ 1

d

dt

∫
T2

um+1 +

∫
T2

umΛsu

=

∫
T2

χ1mu
m∇w · ∇u+ r1u

m+1 − r1u
m+2 − a1r1u

m+1v

=

∫
T2

− χ1m

m+ 1
um+1∆w + r1u

m+1 − r1u
m+2 − a1r1u

m+1v

=

∫
T2

r1u
m+1 + (

αχ1m

m+ 1
− r1)um+2

+ (
βχ1m

m+ 1
− a1r1)um+1v − γχ1m

m+ 1
um+1w.

Via the Stroock-Varopoulos inequality in Lemma 2.1 and (3.45), we have

(3.46)

d

dt

∫
T2

um+1 +
4m

m+ 1

∫
T2

|Λ s
2 (u

m+1
2 )|2

≤
∫
T2

r1(m+ 1)um+1 +
[
αχ1m− r1(m+ 1)

]
um+2

+
[
βχ1m− a1r1(m+ 1)

]
um+1v − γχ1mu

m+1w

≤
∫
T2

r1(m+ 1)um+1.

Therefore we conclude

(3.47)
d

dt

∫
T2

um+1 ≤ r1(m+ 1)

∫
T2

um+1.
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On integration, we can obtain

(3.48) sup
t∈[0,T ]

‖u(t)‖Lm+1 ≤ er1T ‖u0‖Lm+1 .

Testing the second equation of (1.1) with vm and integrating by parts, in the
same way, we can get

(3.49) sup
t∈[0,T ]

‖v(t)‖Lm+1 ≤ er2T ‖v0‖Lm+1 .
�

Lemma 3.3 (Strong estimates). Assume 0 < T <∞ be arbitrary. Let (u, v, w)
be a nonnegative solution to (1.1). If 2 > s > 2p0 with

p0 =max
{ (αχ1−r1)+

αχ1
,

(βχ1−a1r1)+

βχ1
,

(βχ2−r2)+

βχ2
,

(αχ2−a2r2)+

αχ2

}
∈ (0, 1).

Then for any finite p ≥ 1, there exist finite constants C1 and C2 such that

(3.50)
‖u‖L∞(0,T ;Lp) + ‖v‖L∞(0,T ;Lp)

≤ C
[
(eC1T + 1)‖u0‖C1

Lp + (eC2T + 1)‖v0‖C2

Lp

]
.

Proof. Let us recall (3.46) and use the Sobolev embedding H
s
2 (T2) ⊂ L

2
1− s

2 (T2)

for u
m+1

2 , we can get

(3.51)

d

dt

∫
T2

um+1 + Cm, s
( ∫

T2

|u|
m+1
1− s

2

)1− s2
≤
∫
T2

r1(m+ 1)um+1 +
[
αχ1m− r1(m+ 1)

]
um+2

+
[
βχ1m− a1r1(m+ 1)

]
um+1v.

Using Young’s inequality for the last term on the right hand side and inequality
um+1 − um+2 ≤ 1, we have

(3.52)

d

dt

∫
T2

um+1 + Cm, s
( ∫

T2

|u|
m+1
1− s

2

)1− s2
≤
∫
T2

r1(m+ 1)um+1 − r1(m+ 1)um+2 +
[
αχ1m

+
m+ 1

m+ 2

∣∣βχ1m− a1r1(m+ 1)
∣∣]um+2

+
1

m+ 2

∣∣βχ1m− a1r1(m+ 1)
∣∣vm+2

≤ 4π2r1(m+ 1) +

∫
T2

[
αχ1m+

m+ 1

m+ 2

∣∣βχ1m− a1r1(m+ 1)
∣∣]um+2

+
1

m+ 2

∣∣βχ1m− a1r1(m+ 1)
∣∣vm+2.
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After going through a similar process for v, we can arrive at

(3.53)

d

dt

∫
T2

vm+1 + Cm, s
( ∫

T2

|v|
m+1
1− s

2

)1− s2
≤ 4π2r2(m+ 1) +

∫
T2

[
βχ2m+

m+ 1

m+ 2

∣∣αχ2m− a2r2(m+ 1)
∣∣]vm+2

+
1

m+ 2

∣∣αχ2m− a2r2(m+ 1)
∣∣um+2.

Adding (3.52) and (3.53) together, we obtain

(3.54)

d

dt

( ∫
T2

um+1 +

∫
T2

vm+1
)

+ Cm, s‖u‖m+1

L

m+1
1− s

2

+ Cm, s‖v‖m+1

L

m+1
1− s

2

≤ 4π2(m+ 1)(r1 + r2) +A1

∫
T2

um+2 +A2

∫
T2

vm+2,

where

A1 := αχ1m+
m+ 1

m+ 2

∣∣βχ1m− a1r1(m+ 1)
∣∣+

1

m+ 2

∣∣αχ2m− a2r2(m+ 1)
∣∣

and

A2 := βχ2m+
m+ 1

m+ 2

∣∣αχ2m− a2r2(m+ 1)
∣∣+

1

m+ 2

∣∣βχ1m− a1r1(m+ 1)
∣∣.

Let q > 1 be a finite number to be fixed further, and using the interpolation
inequality

(3.55) ‖u‖Lm+2 ≤ C‖u‖θ
L

m+1
1− s

2

‖u‖1−θLq and ‖v‖Lm+2 ≤ C‖v‖θ
L

m+1
1− s

2

‖v‖1−θLq ,

with

(3.56) θ =
2(m+ 2− q)(m+ 1)

(m+ 2)
[
2(m+ 1)− q(2− s)

] .
As long as the interpolation inequality holds, we need the condition q < m+2 <
m+1
1− s2

, i.e.,

(3.57) s(m+ 2) > 2 and q < m+ 2.

Under conditions (3.57), we have

(3.58)

d

dt

( ∫
T2

um+1 +

∫
T2

vm+1
)

+ Cm, s‖u‖m+1

L

m+1
1− s

2

+ Cm, s‖v‖m+1

L

m+1
1− s

2

≤ 4π2(m+ 1)(r1 + r2) + C‖u‖θ(m+2)

L

m+1
1− s

2

‖u‖(1−θ)(m+2)
Lq

+ C‖v‖θ(m+2)

L

m+1
1− s

2

‖v‖(1−θ)(m+2)
Lq .

Furthermore, if we have m+1
θ(m+2) > 1, by (3.56), i.e.,

qs > 2
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then Young’s inequality yields

(3.59)

d

dt

( ∫
T2

um+1 +

∫
T2

vm+1
)

+
Cm, s

2
‖u‖m+1

L

m+1
1− s

2

+
Cm, s

2
‖v‖m+1

L

m+1
1− s

2

≤ 4π2(m+ 1)(r1 + r2) + C‖u‖
(1−θ)(m+2)(m+1)
m+1−θ(m+2)

Lq + C‖v‖
(1−θ)(m+2)(m+1)
m+1−θ(m+2)

Lq .

Recalling the expression of θ and assuming that

(3.60) s(m+ 2) > 2, q < m+ 2 and qs > 2,

we can arrive at

(3.61)

d

dt

( ∫
T2

um+1 +

∫
T2

vm+1
)

+
Cm, s

2
‖u‖m+1

L

m+1
1− s

2

+
Cm, s

2
‖v‖m+1

L

m+1
1− s

2

≤ C
(
‖u‖

q[s(m+2)−2]
qs−2

Lq + ‖v‖
q[s(m+2)−2]

qs−2

Lq + 1
)
.

Denoting λ := q[s(m+2)−2]
qs−2 < ∞, integrating above inequality in time and

neglecting the second and the third terms on its left hand side, we have

(3.62)

‖u‖L∞(0,T ;Lm+1) + ‖v‖L∞(0,T ;Lm+1)

≤ C
(
‖u‖

λ
m+1

Lλ(0,T ;Lq)
+ ‖v‖

λ
m+1

Lλ(0,T ;Lq)
+ T

1
m+1

)
+‖u0‖Lm+1 +‖v0‖Lm+1

≤ CT
1

m+1
(
‖u‖

λ
m+1

L∞(0,T ;Lq)+‖v‖
λ

m+1

L∞(0,T ;Lq) + 1
)
+‖u0‖Lm+1 + ‖v0‖Lm+1 ,

where the conditions (3.60) are required. Let
(3.63)

q = p−1
0 = min

{ αχ1

(αχ1−r1)+
,

βχ1

(βχ1−a1r1)+
,

βχ2

(βχ2−r2)+
,

αχ2

(αχ2−a2r2)+

}
∈ (1,+∞),

by Lemma 3.2, we have

(3.64) ‖u‖L∞(0,T ;Lq) ≤ er1T ‖u0‖Lq and ‖v‖L∞(0,T ;Lq) ≤ er2T ‖v0‖Lq .

Thus, we obtain

(3.65)

‖u‖L∞(0,T ;Lm+1) + ‖v‖L∞(0,T ;Lm+1)

≤ CT
1

m+1

[(
er1T ‖u0‖Lq

) λ
m+1 +

(
er2T ‖v0‖Lq

) λ
m+1 + 1

]
+ ‖u0‖Lm+1 + ‖v0‖Lm+1 .

Noticed that we already have sq = sp−1
0 > 2, if 1 < m+ 1 ≤ q = p−1

0 , Lemma
3.2 immediately yields

(3.66) ‖u‖L∞(0,T ;Lm+1) + ‖v‖L∞(0,T ;Lm+1) ≤ er1T ‖u0‖Lm+1 + er2T ‖v0‖Lm+1 .

If m + 1 > q, the required conditions (3.60) are meet, interpolation in (3.65)
of ‖u0‖Lq between ‖u0‖L1 and ‖u0‖Lm+1 as well ‖v0‖Lq between ‖v0‖L1 and
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‖v0‖Lm+1 , respectively, we can obtain

(3.67)
‖u‖L∞(0,T ;Lm+1) + ‖v‖L∞(0,T ;Lm+1)

≤ C
[(
eC1T + 1

)
‖u0‖C1

Lm+1 +
(
eC2T + 1

)
‖v0‖C2

Lm+1

]
. �

Lemma 3.4. Under the condition of Lemma 3.1, if

‖u‖L∞(0,Tmax;L∞(T2)) + ‖v‖L∞(0,Tmax;L∞(T2)) ≤ F (Tmax) <∞,

then we have

lim sup
t→Tmax

‖u(t)‖H4(T2) + ‖v(t)‖H4(T2) ≤ G(Tmax) <∞.

Proof. In view of the definition of Sobolev space H4, we have

(3.68) ‖u‖H4 + ‖v‖H4 = ‖u‖L2 + ‖v‖L2 +

4∑
k=1

(‖∂kxu‖L2 + ‖∂kxv‖L2).

By Hölder’s inequality, we immediately obtain

(3.69) ‖u‖L2 + ‖v‖L2 ≤ C
[
‖u‖L∞(0,Tmax;L∞(T2)) + ‖v‖L∞(0,Tmax;L∞(T2))

]
<∞.

Let us take k = 1 for an example. Taking the derivative of 1
2‖∂xu‖

2
L2 in time

and using the first equation of (1.1) yield

(3.70)

∫
T2

∂xu∂xut = −
∫
T2

∂xu∂xΛsu− χ1

∫
T2

∂xu∂x∇ · (u∇w)

+ r1

∫
T2

∂xu∂x[u(1− u− a1v)]

= −
∫
T2

|Λ s
2 ∂xu|2 + III1 + III2.

Integrating by parts and using Hölder’s inequality for the term III1, we obtain

III1 = −χ1

∫
T2

∂xu∂x(∇u · ∇w)− χ1

∫
T2

∂x∂x(u∆w)(3.71)

= − χ1

∫
T2

∂xu∂x∇u · ∇w − χ1

∫
T2

∂xu∇u · ∂x∇w

− χ1

∫
T2

∂xu∂xu∆w − χ1

∫
T2

∂xuu∂x∆w

≤ − χ1

2

∫
T2

∇(∂xu)2 · ∇w + χ1‖∂x∇w‖L∞‖∂xu‖L2‖∇u‖L2

+ χ1‖∆w‖L∞‖∂xu‖2L2 + χ1‖u‖L∞‖∂xu‖L2‖∂x∆w‖L2

≤ χ1

2

∫
T2

(∂xu)2∆w + C‖∆w‖L∞‖∂xu‖2L2

+ C‖∂xu‖L2(‖∂xu‖L2 + ‖∂xv‖L2 + ‖∂xw‖L2)

≤ C‖∆w‖L∞‖∂xu‖2L2 + C‖∂xu‖L2(‖∂xu‖L2 + ‖∂xv‖L2 + ‖∂xw‖L2)
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≤ C‖∂xu‖L2(‖∂xu‖L2 + ‖∂xv‖L2 + 1),

where we have used

(3.72) ‖∂xw‖L2 ≤ ‖w‖H2 ≤ ‖u‖L2 + ‖v‖L2 <∞

and

(3.73)
‖∆w‖L∞ ≤ C(‖u‖L∞ + ‖v‖L∞ + ‖w‖L∞)

≤ C(‖u‖L∞ + ‖v‖L∞ + ‖w‖H2) <∞.

As for the term III2, Hölder’s inequality immediately yields

(3.74)

III2 = r1

∫
T2

∂xu∂xu− r1

∫
T2

∂xu∂x(u2)− a1r1

∫
T2

∂xu∂x(uv)

= r1‖∂xu‖2L2 − 2r1

∫
T2

∂xuu∂xu− a1r1

∫
T2

∂xu∂xuv

− a1r1

∫
T2

∂xuu∂xv

≤ r1‖∂xu‖2L2 + 2r1‖u‖L∞‖∂xu‖2L2 + a1r1‖v‖L∞‖∂xu‖2L2

+ a1r1‖u‖L∞‖∂xu‖L2‖∂xv‖L2

≤ C‖∂xu‖L2(‖∂xu‖L2 + ‖∂xv‖L2).

Plugging (3.71) and (3.74) into (3.70), we obtain

(3.75)
1

2

d

dt
‖∂xu‖2L2 ≤ C‖∂xu‖L2(‖∂xu‖L2 + ‖∂xv‖L2 + 1),

i.e.,

(3.76)
d

dt
‖∂xu‖L2 ≤ C(‖∂xu‖L2 + ‖∂xv‖L2 + 1).

As for v, in the same way, we have

(3.77)
d

dt
‖∂xv‖L2 ≤ C(‖∂xu‖L2 + ‖∂xv‖L2 + 1).

Combining (3.76) with (3.77) yields

(3.78)
d

dt
(‖∂xu‖L2 + ‖∂xv‖L2) ≤ C(‖∂xu‖L2 + ‖∂xv‖L2 + 1).

By a comparison theorem, we obtain

(3.79) ‖∂xu‖L2 + ‖∂xv‖L2 + 1 ≤ C(‖∂xu0‖L2 + ‖∂xv0‖L2 + 1)eCT <∞.

Similarly, we have

‖∂kxu‖L2 + ‖∂kxv‖L2 <∞ for k = 2, 3, 4.

Hence, we can arrive at the conclusion. �
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4. Global existence

Taking any u0, v0 ∈ H4 and taking advantage of Lemma 3.1, it is proved
that there admits a local classical solution on the time interval [0, Tmax) for
problem (1.1), and the standard continuation argument for an autonomous
ODE in Banach spaces implies that either Tmax =∞ or Tmax <∞ and

(4.1) lim sup
t→Tmax

‖u(t)‖H4 + ‖v(t)‖H4 =∞.

Due to Lemma 3.4, in order to prove the global existence of solutions, we
only need to show the boundedness of the sum of ‖u(t)‖L∞(0,Tmax;L∞(T 2)) and
‖v(t)‖L∞(0,Tmax;L∞(T 2)).

The proof of Theorem 1.1. Let us denote by xt1 the point such that

u(xt1 , t
1) = max

x∈T2
u(x, t)

and xt2 the point such that

v(xt2 , t
2) = max

x∈T2
v(x, t),

meanwhile, we write

ū(x, t) = u(xt1 , t
1) and v̄(x, t) = v(xt2 , t

2).

Since u, v ∈ C2,1(T 2 × (0, Tmax)), the function ū and v̄ are Lipschitz and
therefore they possess a derivative, respectively almost everywhere. As the
derivative vanishes at the maximum point, evaluating the first equation of
(1.1) at the maximum point of u and using the kernel expression for Λs, we
obtain

(4.2) ūt = −Λsu(xt1 , t
1)− χ1ū∆w(xt1 , t

1) + r1ū
[
1− ū− a1v(xt1 , t

1)
]
.

Taking advantage of the third equation of (1.1) and the nonnegativity of solu-
tions, we can get

(4.3)

d

dt
ū(t) + Λsu(xt1 , t

1)

= − χ1ū
[
γw(xt1 , t

1)− αū− βv(xt1 , t
1)
]

+ r1ū
[
1− ū− a1v(xt1 , t

1)
]

= r1ū+ (αχ1 − r1)ū2 + (βχ1 − a1r1)ūv(xt1 , t
1)− γχ1ūw(xt1 , t

1)

≤ r1ū+ (αχ1 − r1)+ū
2 + (βχ1 − a1r1)+ūv(xt1 , t

1).

As for the second equation of (1.1), in the same way, we have

(4.4)
d

dt
v̄(t) + Λsv(xt2 , t

2) ≤ r2v̄+ (βχ2 − r2)+v̄
2 + (αχ2 − a2r2)+v̄u(xt2 , t

2).

If
αχ1 − r1 ≤ 0, βχ1 − a1r1 ≤ 0, βχ2 − r2 ≤ 0 and αχ2 − a2r2 ≤ 0.

The inequalities (4.3) and (4.4) turn into

d

dt
ū ≤ r1ū− (r1 − αχ1)ū2 and

d

dt
v̄ ≤ r2v̄ − (r2 − βχ2)v̄2.
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By a comparison theorem we conclude

u(t) ≤ max
{
‖u0‖L∞ ;

r1

r1 − αχ1

}
and v(t) ≤ max

{
‖v0‖L∞ ;

r2

r2 − βχ2

}
.

Thus

‖u‖L∞(0,Tmax;L∞(T 2)) + ‖v‖L∞(0,Tmax;L∞(T 2)) <∞.
Else,

p0 =max
{ (αχ1−r1)+

αχ1
,

(βχ1−a1r1)+

βχ1
,

(βχ2−r2)+

βχ2
,

(αχ2 − a2r2)+

αχ2

}
∈ (0, 1),

using Lemma 2.2 for u with p = p−1
0 ≥ 1, we have either

ū(t) ≤M1(s)‖u‖Lp ,
or

Λsu(xt1 , t
1) ≥M2(s)

ū(t)1+ sp
2

‖u‖
sp
2

Lp

,

and Lemma 3.3 yields

(4.5)

‖u‖L∞(0,Tmax;Lp) + ‖v‖L∞(0,Tmax;Lp)

≤ C
[(
eC1Tmax + 1

)
‖u0‖C1

Lp +
(
eC2Tmax + 1

)
‖v0‖C2

Lp

]
:= C0(Tmax).

Then we have the following alternative: either

(4.6)

‖u‖L∞(0,Tmax;L∞) ≤M1(s)‖u‖L∞(0,Tmax;Lp)

≤M1(s)C0(Tmax)

≤ C̃0(Tmax),

or

(4.7)

Λsu(xt1 , t
1) ≥M2(s)

ū(t)1+ sp
2

‖u‖
sp
2

L∞(0,Tmax;Lp)

≥M2(s)
ū(t)1+ sp

2

C
sp
2

0 (Tmax)

≥ C̄0(Tmax)ū(t)1+ sp
2 ,

i.e., we have either

(4.8) ‖u‖L∞(0,Tmax;L∞) ≤ C̃0(Tmax),

or

(4.9) Λsu(xt1 , t
1) ≥ C̄0(Tmax)ū(t)1+ sp

2 .

As for v, after going through the same process, we have a similar conclusion:
either

(4.10) ‖v‖L∞(0,Tmax;L∞) ≤ C̃0(Tmax),



1290 Y. LEI, Z. LIU, AND L. ZHOU

or

(4.11) Λsv(xt2 , t
2) ≥ C̄0(Tmax)v̄(t)1+ sp

2 .

If (4.8) and (4.10) are true, we immediately arrive at

(4.12) ‖u‖L∞(0,Tmax;L∞) + ‖v‖L∞(0,Tmax;L∞) <∞.
In the case (4.8) and (4.11) are satisfied, we have

‖u‖L∞(0,Tmax;L∞) <∞,(4.13)

and

(4.14)

d

dt
v̄(t) + C̄0(Tmax)v̄1+ sp

2

≤ r2v̄ + (βχ2 − r2)+v̄
2 + (αχ2 − a2r2)+v̄u(xt2 , t

2)

≤ (βχ2 − r2)+v̄
2 +

[
r2 + (αχ2 − a2r2)+‖u‖L∞(0,Tmax;L∞)

]
v̄.

In fact, we can get 1 + sp
2 > 2 from s > 2p0. Using Young’s inequality on the

right hand side, we obtain

(4.15)
d

dt
v̄ ≤ C3(Tmax).

Integration (4.15) in time gives us

(4.16) ‖v‖L∞(0,Tmax;L∞) ≤ ‖v0‖L∞(0,Tmax;L∞)e
C3(Tmax)Tmax .

Combining (4.13) with (4.16) also leads to (4.12).
The case (4.9) and (4.10) hold can be treated in a similar fashion.
Finally, when (4.9) and (4.11) are correct, Young’s inequality yields

(4.17)

d

dt
ū(t) + C̄0(Tmax)ū1+ sp

2

≤ r1ū+ (αχ1 − r1)+ū
2 + (βχ1 − a1r1)+ūv̄

≤ r1ū+
[
(αχ1 − r1)+ +

1

2
(βχ1 − a1r1)+

]
ū2 +

1

2
(βχ1 − a1r1)+v̄

2

and

(4.18)

d

dt
v̄(t) + C̄0(Tmax)v̄1+ sp

2

≤ r2v̄ + (βχ2 − r2)+v̄
2 + (αχ2 − a2r2)+ūv̄

≤ r2v̄ +
[
(βχ2 − r2)+ +

1

2
(αχ2 − a2r2)+

]
v̄2 +

1

2
(αχ2 − a2r2)+ū

2.

Adding (4.18) into (4.17), we obtain

(4.19)

d

dt

(
ū(t) + v̄(t)

)
+ C̄0(Tmax)ū1+ sp

2 + C̄0(Tmax)v̄1+ sp
2

≤ r1ū+ r2v̄ +
[
(αχ1 − r1)+ +

1

2
(βχ1 − a1r1)+ +

1

2
(αχ2 − a2r2)+

]
ū2

+
[
(βχ2 − r2)+ +

1

2
(αχ2 − a2r2)+ +

1

2
(βχ1 − a1r1)+

]
v̄2.
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Making use of Young’s inequality and neglecting the second and the third terms
on the left hand side of (4.19), we have

(4.20)
d

dt

(
ū(t) + v̄(t)

)
≤ C4(Tmax).

Integration (4.20) in time yields

(4.21)

‖u‖L∞(0,Tmax;L∞) + ‖v‖L∞(0,Tmax;L∞)

≤ (‖u0‖L∞(0,Tmax;L∞) + ‖v0‖L∞(0,Tmax;L∞))e
C4(Tmax)Tmax

< ∞.

In all above four cases, taking advantage of Lemma 3.4, we arrive at a contra-
diction with (4.1). Hence we obtain the global existence of solutions. That is,
the proof of Theorem 1.1 is complete. �

5. Global asymptotic stability

In this section, we will take advantage of the proof method of [8] to discuss
the asymptotic behavior of solutions, for the sake of completeness, we present
the main process here.

From the proof of Theorem 1.1, we know that u and v exist globally and they
are both bounded and nonnegative, so we can define some finite nonnegative
real numbers L1, l1, L2, l2 by

L1 := lim sup
t→∞

(
max
x∈T2

u(x, t)
)
, l1 := lim inf

t→∞

(
min
x∈T2

u(x, t)
)
,

L2 := lim sup
t→∞

(
max
x∈T2

v(x, t)
)
, l2 := lim inf

t→∞

(
min
x∈T2

v(x, t)
)
.

By the definitions, we obtain that for any ε > 0, there exists Tε > 0 such that

(5.1)
l1 − ε < u(x, t) < L1 + ε and

l2 − ε < v(x, t) < L2 + ε for all t > Tε and all x ∈ T2.

Via the maximum principle applied to the third equation of (1.1), we can get

(5.2)

min
ξ∈T2

(αu(ξ, t) + βv(ξ, t))

≤ γw(x, t)

≤ max
ξ∈T2

(αu(ξ, t) + βv(ξ, t)) for all t > 0 and all x ∈ T2.

Therefore, we have for all ε > 0, there exists Tε > 0 such that

(5.3) αl1 +βl2−2ε < γw(x, t) < αL1 +βL2 +2ε for all t > Tε and all x ∈ T2.

Having the boundedness of u, v and w at hand, it is sufficient for us to obtain
the conclusion.
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Proof of Theorem 1.2. At first, by the first and the third equations of (1.1), we
have

(5.4) ut + Λsu+χ1∇u · ∇w = r1u+ (αχ1− r1)u2 + (βχ1− a1r1)uv− γχ1uw.

Assuming ε > 0 and t > Tε, taking advantage of (5.1), (5.3) and (1.8) as well
the nonnegativity of u, we obtain

(5.5)

ut + Λsu+ χ1∇u · ∇w
≤ r1u+ (αχ1 − r1)u2 + (βχ1 − a1r1)u(l2 − ε)− χ1u(αl1 + βl2 − 2ε)

= − (r1 − αχ1)u2 +
[
r1 + l2(βχ1 − a1r1)− χ1(αl1 + βl2)

+ (−(βχ1 − a1r1) + 2χ1)ε
]
u.

Choosing ūε ∈ (0,∞) such that u(·, Tε) ≤ ūε in T2 and denoting by ȳ :
[Tε,+∞)→ R the function solving

(5.6)


ȳ′ = − (r1 − αχ1)ȳ2 +

[
r1 + l2(βχ1 − a1r1)

− χ1(αl1 + βl2) + (−(βχ1 − a1r1) + 2χ1)ε
]
ȳ,

ȳ(Tε) = ūε.

Thus we have

(5.7) ȳ(t)→
[
r1 − a1r1l2 − αχ1l1 + (a1r1 − βχ1 + 2χ1)ε

]
+

r1 − αχ1
as t→∞.

By comparison as well the arbitrarity of ε, we can get

(5.8) L1 ≤ lim sup
t→∞

ȳ(t) =
(r1 − a1r1l2 − αχ1l1)+

r1 − αχ1
.

Making use of (1.8), we have

(5.9) (r1 − αχ1)L1 ≤ (r1 − a1r1l2 − αχ1l1)+.

On the other hand, making use of (5.1), (5.3) and (1.8) as well the nonneg-
ativity of u again, for all ε > 0 and t > Tε, we also have

(5.10)

ut + Λsu+ χ1∇u · ∇w
≥ r1u+ (αχ1 − r1)u2 + (βχ1 − a1r1)u(L2 + ε)

− χ1u(αL1 + βL2 + 2ε)

= − (r1 − αχ1)u2 +
[
r1 + L2(βχ1 − a1r1)− χ1(αL1 + βL2)

+ (βχ1 − a1r1 − 2χ1)ε
]
u.

Let us choose uε > 0 such that u(·, Tε) ≥ uε in T2 and denote by y : [Tε,+∞)→
R the function solving

(5.11)


y′ = − (r1 − αχ1)y2 +

[
r1 + L2(βχ1 − a1r1)

− χ1(αL1 + βL2) + (βχ1 − a1r1 − 2χ1)ε
]
y,

y(Tε) = uε.
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Then we arrive at

(5.12) y(t)→
[
r1 − a1r1L2 − αχ1L1 + (βχ1 − a1r1 − 2χ1)ε

]
+

r1 − αχ1
as t→∞.

From the comparison theorem and the arbitrarity of ε, we can obtain

(5.13) l1 ≥ lim inf
t→∞

y(t) =
r1 − a1r1L2 − αχ1L1

r1 − αχ1
.

By (1.8), we have

(5.14) (r1 − αχ1)l1 ≥ r1 − a1r1L2 − αχ1L1.

Making the same process to the second and the third equations of (1.1), we
get

(5.15) L2 ≤
(r2 − a2r2l1 − βχ2l2)+

r2 − βχ2

and

(5.16) l2 ≥
r2 − a2r2L1 − βχ2L2

r2 − βχ2
.

Using (1.8), we have

(5.17) (r2 − βχ2)L2 ≤ (r2 − a2r2l1 − βχ2l2)+

and

(5.18) (r2 − βχ2)l2 ≥ r2 − a2r2L1 − βχ2L2.

Next, before going on, we will verify that the quantities of the upper bounds
for L1 and L2 are in fact nonnegative, so we can neglect the positive part
operator (·)+. By Lemma 3.3 of [8], we obtain

(5.19) r1 − a1r1l2 − αχ1l1 ≥ 0 and r2 − a2r2l1 − βχ2l2 ≥ 0.

Thus (5.9) and (5.17) turn into

(5.20) (r1 − αχ1)L1 ≤ r1 − a1r1l2 − αχ1l1

and

(5.21) (r2 − βχ2)L2 ≤ r2 − a2r2l1 − βχ2l2.

Since then, we have get explicit bounds for u and v, next we will calculate
the exact limit values of u and v as t→∞. Let us start with the convergence
of u and v, i.e., L1 = l1 and L2 = l2 hold. Collecting (5.14) and (5.20) as well
Making use of (1.8), we can obtain

(5.22) L1 − l1 ≤
a1r1

r1 − 2αχ1
(L2 − l2).

By (5.18), (5.21) and (1.8), in the same way, we have

(5.23) L2 − l2 ≤
a2r2

r2 − 2βχ2
(L1 − l1).
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Combining (5.22) and (5.23) yields

(5.24) L2 − l2 ≤
a2r2

r2 − 2βχ2

a1r1

r1 − 2αχ1
(L2 − l2).

Hence we can obtain L2 = l2 from the small coefficient in (1.8). By (5.22), we
can also get L1 = l1.

Finally, we will show

(5.25) L1 = l1 = u∗ and L2 = l2 = v∗.

From (5.14), (5.18), (5.20), (5.21) and (5.25), we have

(r1−αχ1)L1 = r1−a1r1L2−αχ1L1 and (r2−βχ2)L2 = r2−a2r2L1−βχ2L2.

Therefore, we can obtain

L1 =
1− a1

1− a1a2
= u∗ = l1 and L2 =

1− a2

1− a1a2
= v∗ = l2.

These imply that

u(t)→ u∗ and v(t)→ v∗ as t→∞

uniformly in T2. According to (5.3), for any ε > 0, there exists Tε > 0 such
that

αu∗ + βv∗ − 2ε < γw(x, t) < αu∗ + βv∗ + 2ε for all t > Tε and all x ∈ T2.

Therefore w(x, t) → αu∗+βv∗

γ as t → ∞ uniformly in T2. With these results,

we have accomplished the proof of Theorem 1.2. �
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