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ABSTRACT. In this paper, we propose and analyze three viral infection models with humoral

immunity including an eclipse stage of infected cells. The incidence rate of infection is repre-

sented by bilinear incidence and saturated incidence in the first and second models, respectively,

while it is given by a more general function in the third one. The neutralization rate of viruses

is giv0en by bilinear form in the first two models, while it is given by a general function in

the third one. For each model, we have derived two threshold parameters, the basic infection

reproduction number which determines whether or not a chronic-infection can be established

without humoral immunity and the humoral immune response activation number which de-

termines whether or not a chronic-infection can be established with humoral immunity. By

constructing suitable Lyapunov functions we have proven the global asymptotic stability of all

equilibria of the models. For the third model, we have established a set of conditions on the

threshold parameters and on the general functions which are sufficient for the global stability of

the equilibria of the model. We have performed some numerical simulations for the third model

with specific forms of the incidence and neutralization rates and have shown that the numerical

results are consistent with the theoretical results.

1. INTRODUCTION

During the last decades, several dangerous viruses have been appeared which attack the

human body and some of them causes death. These prompt many researchers to study mathe-

matical modeling and model analysis of the interaction between the host cells and viruses such

as human immunodeficiency virus (HIV) (see e.g. [1]-[12]), hepatitis B virus (HBV) [13]-[15],

hepatitis C virus (HCV) [16]-[18], human T cell leukemia virus (HTLV) [19] and dengue virus

[20], etc. There are many benefits from mathematical models of viral infection including: (i)

they provide important quantitative insights into viral dynamics in vivo, (ii) they can improve
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diagnosis and treatment strategies which raise hopes of patients infected with viruses, (iii) they

can be used to estimate key parameter values that control the infection process.

The basic viral infection model which was proposed by Nowak and Bangham [2] is a three

dimensional ODEs and contains three variables x, y and v representing the concentrations of

the uninfected target cells, infected cells and free virus particles, respectively. To provide more

accurate modelling for the viral infection, the effect of immune response has to be considered.

The immune system has two main responses to viral infections, the cell mediated immunity

and humoral immunity. The cell mediated immunity is based on the Cytotoxic T Lymphocyte

(CTL) cells which are responsible to attack and kill the infected cells. The humoral immunity

is based on the antibodies that are produced by the B cells. The function of the antibodies is to

attack the viruses [1]. In some infections such as in malaria, the cell mediated immunity is less

effective than the humoral immunity [21]. In the literature, several mathematical models have

been appeared to consider the humoral immune response into the viral infection models (see

e.g. [22]-[28]). The basic model of viral infection with humoral immune response is given by

[22], [28]:

ẋ = λ− dx− βxv, (1.1)

ẏ = βxv − ay, (1.2)

v̇ = ky − cv − rzv, (1.3)

ż = gzv − μz, (1.4)

where z denotes the concentration of the B cells. Parameters λ, k and g represent, respectively,

the rate at which new healthy cells are generated from the source within the body, the generation

rate constant of free viruses produced from the infected cells and the proliferation rate constant

of B cells. Parameters d, a, c and μ are the natural death rate constants of the uninfected cells,

infected cells, free virus particles and B cells, respectively. Parameter β is the infection rate

constant and r is the neutralization rate constant of viruses. All the parameters given in model

(1.1)-(1.4) are positive.

Model (1.1)-(1.4), does not take into consideration an eclipse stage of infected cells (such

cells are called latently infected cells which contain the viruses but not producing it) which is

due to the delay between the moment of infection and the moment when the infected cell be-

comes active to produce new infectious viruses. Latently infected cells have been incorporated

into viral infection models in [3] and [29]. The global stability of viral infection models with

latently infected cells has been studied in several works (see e.g. [9], [30] and [31]). However,

in [9], [30] and [31], the humoral immune response has been neglected.

Our objective in this paper is to propose a class of viral infection models with humoral

immune response taking into consideration both latently and actively infected cells and investi-

gate their basic and global properties. The incidence rate of infection is represented by bilinear

infection rate and saturation functional response in the first and second model, respectively,

while it is given by a general function in the third one. The neutralization rate of viruses is

given by bilinear form in the first two models, while it is given by a general function in the

third one. Using Lyapunov functions, we show that the global dynamics of the first two models
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are determined by two threshold parameters, the basic infection reproduction number and the

humoral immune response activation number. For the third model, we derive two threshold

parameters and show that, under a set of conditions on these parameters and on the general

functions, all the equilibria of the model are globally asymptotically stable (GAS).

2. MODEL WITH BILINEAR INCIDENCE RATE

In this section, we propose a viral infection model with humoral immune response, taking

into account the latently infected and actively infected cells.

ẋ = λ− dx− βxv, (2.1)

ẇ = (1− α)βxv − (e+ b)w, (2.2)

ẏ = αβxv + bw − ay, (2.3)

v̇ = ky − cv − rvz, (2.4)

ż = gvz − μz, (2.5)

where w and y are the concentrations of latently and actively infected cells, respectively. Eq.

(2.2) describes the dynamics of the latently infected cells and shows that they are converted to

actively infected cells with rate constant b. The parameters e and a are the death rate constants

of the latently and actively infected cells, respectively. The fractions (1 − α) and α with

0 < α < 1 are the probabilities that upon infection, an uninfected cell will become either

latently infected or actively infected. The other variables and parameters of the model have the

same definitions as given in Section 1.

Model (2.1)-(2.5) may describe the dynamics of several viruses such as HIV, HBV and HCV.

In case of HIV, x will represent the concentration of the uninfected CD4+ T cells, while in case

of HBV or HCV it represents the hepatocyte cells.

2.1. Positive invariance. We note that, model (2.1)-(2.5) is biologically acceptable in the

sense that no population goes negative. It is straightforward to check the positive invariance of

the non-negative orthant R5
≥0 by model (2.1)-(2.5) (see e.g. [11] and [29]). In the following,

we show the boundedness of the solutions of model (2.1)-(2.5).

Proposition 1. There exist positive numbers Li, i = 1, 2, 3 such that the compact set

Ω =
{
(x,w, y, v, z) ∈ R5

≥0 : 0 ≤ x,w, y ≤ L1, 0 ≤ v ≤ L2, 0 ≤ z ≤ L3

}
is positively invariant.

Proof. Let X1(t) = x(t) + w(t) + y(t), then

Ẋ1 = λ− dx− ew − ay ≤ λ− s1X1,

where s1 = min{d, a, e}. Hence X1(t) ≤ L1, if X1(0) ≤ L1, where L1 =
λ

s1
. Since x(t) >

0, w(t) ≥ 0 and y(t) ≥ 0, then 0 ≤ x(t), w(t), y(t) ≤ L1 if 0 ≤ x(0) + w(0) + y(0) ≤ L1.
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On the other hand, let X2(t) = v(t) + r
gz(t), then

Ẋ2 = ky − cv − rμ

g
z ≤ kL1 − s2

(
v +

r

g
z

)
= kL1 − s2X2,

where s2 = min{c, μ}. Hence X2(t) ≤ L2, if X2(0) ≤ L2, where L2 =
kL1

s2
. Since v(t) ≥ 0

and z(t) ≥ 0, then 0 ≤ v(t) ≤ L2 and 0 ≤ z(t) ≤ L3 if 0 ≤ v(0) + r
gz(0) ≤ L2, where

L3 =
gL2

r . �

2.2. Equilibria and biological thresholds. Now we calculate the equilibria of the model and

derive two threshold parameters.

Lemma 1. For system (2.1)-(2.5) there exist two threshold parameters RB
0 > 0 and RB

1 > 0
with RB

1 < RB
0 such that

(i) if RB
0 ≤ 1, then there exists only one positive equilibrium E0 ∈ Ω,

(ii) if RB
1 ≤ 1 < RB

0 , then there exist only two positive equilibria E0 ∈ Ω and E1 ∈ Ω, and

(iii) if RB
1 > 1, then there exist three positive equilibria E0 ∈ Ω, E1 ∈ Ω and E2 ∈

◦
Ω,

where
◦
Ω is the interior of Ω.

Proof. Let the right-hand sides of Eqs. (2.1)-(2.5) equal to zero, then we get that system

(2.1)-(2.5) can admit three equilibria:

(i) Infection-free equilibrium E0 = (x0, 0, 0, 0, 0), where x0 =
λ

d
, which represents the

state where the viruses are absent.

(ii) Chronic-infection equilibrium without humoral immune response E1 = (x1, w1, y1, v1, 0),
where

x1 =
ac(e+ b)

kβ(eα+ b)
, w1 =

(1− α)adc

kβ(eα+ b)

(
kβλ(eα+ b)

adc(e+ b)
− 1

)
,

y1 =
cd

kβ

(
kβλ(eα+ b)

adc(e+ b)
− 1

)
, v1 =

d

β

(
kβλ(eα+ b)

adc(e+ b)
− 1

)
.

Therefore, if
kβλ(eα+b)
adc(e+b) > 1, then w1, y1, v1 > 0. Let us define

RB
0 =

kβλ(eα+ b)

adc(e+ b)
,

which represents the basic infection reproduction number and determines whether or not a

chronic-infection can be established without humoral immune response.

In terms of RB
0 , we can write the components of E1 as:

x1 =
x0

RB
0

, w1 =
(1− α)adc

kβ(eα+ b)
(RB

0 − 1), y1 =
cd

kβ
(RB

0 − 1), v1 =
d

β
(RB

0 − 1).

Thus, if RB
0 > 1, then E1 exists and the infection becomes chronic without humoral immunity.



GLOBAL DYNAMICS OF HUMORAL IMMUNITY VIRAL INFECTION MODELS 141

(iii) Chronic-infection equilibrium with humoral immune response E2 = (x2, w2, y2, v2, z2),
where

x2 =
λg

gd+ βμ
, w2 =

(1− α)βλμ

(e+ b)(dg + βμ)
, y2 =

(eα+ b)βλμ

a(e+ b)(dg + βμ)
,

v2 =
μ

g
, z2 =

c

r

(
gkβλ(eα+ b)

ac(e+ b)(dg + βμ)
− 1

)
.

Hence, z2 > 0 when
gkβλ(eα+b)

ac(e+b)(dg+βμ) > 1. Let us define the parameter RB
1 as

RB
1 =

gkβλ(eα+ b)

ac(e+ b)(dg + βμ)
=

RB
0

1 +
βμ

dg

,

which represents the humoral immune response activation number and determines whether

or not a persistent humoral immune response can be established. Then we can write z2 =
c

r
(RB

1 − 1). It follows that, if RB
1 > 1, then E2 exists. In this case, the infection becomes

chronic with humoral immunity. Clearly, RB
1 < RB

0 .

Now we show that E0 ∈ Ω, E1 ∈ Ω and E2 ∈
◦
Ω. Clearly E0 ∈ Ω. From the equilibrium

conditions of E1 we have

dx1 +
(e+ b)w1

1− α
= λ, dx1 +

a(e+ b)

eα+ b
y1 = λ, cv1 = ky1,

then

0 < x1 <
λ

d
≤ L1,

0 < w1 <
(1− α)λ

e+ b
<

λ

e
≤ L1,

0 < y1 <
(eα+ b)λ

a(e+ b)
<

λ

a
≤ L1,

0 < v1 =
k

c
y1 <

k

c
L1 ≤ kL1

s2
= L2,

Moreover, z1 = 0 and then, E1 ∈ Ω.
Similarly, one can show that 0 < x2, w2, y2 < L1. Now we show that, if RB

1 > 1, then

0 < v2 < L2 and 0 < z2 < L3. From the steady state condition of E2, we have

cv2 + rv2z2 = ky2,

and then

cv2 < ky2 ⇒ 0 < v2 <
k

c
L1 ≤ L2,

rv2z2 < ky2 ⇒ 0 < z2 <
gky2
rμ

≤ gk

rs2
L1 = L3.
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It follows that, E2 ∈
◦
Ω. �

2.3. Global stability. In this subsection, we prove the global stability of all equilibria of sys-

tem (2.1)-(2.5) employing the method of Lyapunov function and applying LaSalle’s invariance

principle. Denote

H(s) = s− 1− ln s.

Then, H(s) ≥ 0 for s > 0 and H(s) = 0 if and only if s = 1.

Theorem 1. For system (2.1)-(2.5) if RB
0 ≤ 1, then E0 is GAS in Ω.

Proof. Define a Lyapunov function WB
0 as follows:

WB
0 (x,w, y, v, z) = x0H

(
x

x0

)
+

b

eα+ b
w+

e+ b

eα+ b
y+

a(e+ b)

k(eα+ b)
v+

ar(e+ b)

kg(eα+ b)
z. (2.6)

Note that, WB
0 (x,w, y, v, z) > 0 for all x,w, y, v, z > 0, while WB

0 (x,w, y, v, z) reaches its

global minimum at E0. The time derivative of WB
0 along the trajectories of (2.1)-(2.5) is given

by:

dWB
0

dt
=
(
1− x0

x

)
(λ− dx− βxv) +

b

eα+ b
((1− α)βxv − (e+ b)w)

+
e+ b

eα+ b
(αβxv + bw − ay) +

a(e+ b)

k(eα+ b)
(ky − cv − rvz) +

ar(e+ b)

kg(eα+ b)
(gvz − μz)

= −d
(x− x0)

2

x
+ βx0v − ac(e+ b)

k(eα+ b)
v − arμ(e+ b)

kg(eα+ b)
z

= −d
(x− x0)

2

x
+

ac(e+ b)

k(eα+ b)
(RB

0 − 1)v − arμ(e+ b)

kg(eα+ b)
z. (2.7)

If RB
0 ≤ 1 then

dWB
0

dt ≤ 0 for all x, v, z > 0. Thus, the solutions of system (2.1)-(2.5) converge

to Γ, the largest invariant subset of
{

dWB
0

dt = 0
}

[32]. Clearly, it follows from Eq. (2.7) that

dWB
0

dt = 0 if and only if x(t) = x0, v(t) = 0 and z(t) = 0. The set Γ is invariant and for any

element belongs to Γ satisfies v(t) = 0 and z(t) = 0, then v̇(t) = 0. We can see from Eq.

(2.4) that, 0 = v̇(t) = ky(t), and thus y(t) = 0. Moreover, from Eq. (2.3) we get w(t) = 0.

Hence
dWB

0
dt = 0 if and only if x(t) = x0, w(t) = 0, y(t) = 0, v(t) = 0 and z(t) = 0. From

LaSalle’s invariance principle, E0 is GAS. �

Theorem 2. For system (2.1)-(2.5) if RB
1 ≤ 1 < RB

0 , then E1 is GAS in Ω.
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Proof. We construct the following Lyapunov function

WB
1 (x,w, y, v, z) = x1H

(
x

x1

)
+

b

eα+ b
w1H

(
w

w1

)
+

e+ b

eα+ b
y1H

(
y

y1

)
+

a(e+ b)

k(eα+ b)
v1H

(
v

v1

)
+

ar(e+ b)

kg(eα+ b)
z.

We have WB
1 (x,w, y, v, z) > 0 for all x,w, y, v, z > 0 and WB

1 (x1, w1, y1, v1, 0) = 0. Cal-

culating
dWB

1
dt along the trajectories of (2.1)-(2.5) we get

dWB
1

dt
=
(
1− x1

x

)
(λ− dx− βxv) +

b

eα+ b

(
1− w1

w

)
((1− α)βxv − (e+ b)w)

+
e+ b

eα+ b

(
1− y1

y

)
(αβxv + bw − ay) +

a(e+ b)

k(eα+ b)

(
1− v1

v

)
(ky − cv − rvz)

+
ar(e+ b)

kg(eα+ b)
(gvz − μz) . (2.8)

Applying λ = dx1 + βx1v1 and collecting terms of Eq. (2.8) we obtain

dWB
1

dt
= −d

(x− x1)
2

x
+ βx1v1

(
1− x1

x

)
+ βx1v − b(1− α)

eα+ b
βxv

w1

w

+
b(e+ b)

eα+ b
w1 − (e+ b)α

eα+ b
βxv

y1
y

− (e+ b)b

eα+ b

y1w

y
+

e+ b

eα+ b
ay1 − ac(e+ b)

k(eα+ b)
v

− a(e+ b)

(eα+ b)

yv1
v

+
ac(e+ b)

k(eα+ b)
v1 +

ar(e+ b)

k(eα+ b)
v1z − arμ(e+ b)

kg(eα+ b)
z.

Using the equilibrium conditions for E1:

(1− α)βx1v1 = (e+ b)w1, αβx1v1 + bw1 = ay1, cv1 = ky1,

we get

e+ b

eα+ b
ay1 =

ac(e+ b)

k(eα+ b)
v1 = βx1v1 =

b(1− α)

eα+ b
βx1v1 +

(e+ b)α

eα+ b
βx1v1

and

dWB
1

dt
= −d

(x− x1)
2

x
+

b(1− α)

eα+ b
βx1v1

(
1− x1

x

)
+

(e+ b)α

eα+ b
βx1v1

(
1− x1

x

)
− b(1− α)

eα+ b
βx1v1

w1xv

wx1v1
+

b(1− α)

eα+ b
βx1v1

− (e+ b)α

eα+ b
βx1v1

y1xv

yx1v1
− b(1− α)

eα+ b
βx1v1

y1w

yw1
+

b(1− α)

eα+ b
βx1v1

+
(e+ b)α

eα+ b
βx1v1 − b(1− α)

eα+ b
βx1v1

yv1
y1v

− (e+ b)α

eα+ b
βx1v1

yv1
y1v
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+
b(1− α)

eα+ b
βx1v1 +

(e+ b)α

eα+ b
βx1v1 +

ar(e+ b)

k(eα+ b)

(
v1 − μ

g

)
z

= −d
(x− x1)

2

x
+

b(1− α)

eα+ b
βx1v1

[
4− x1

x
− w1xv

wx1v1
− yv1

y1v
− y1w

yw1

]
+

(e+ b)α

eα+ b
βx1v1

[
3− x1

x
− yv1

y1v
− y1xv

yx1v1

]
+

ar(e+ b)

k(eα+ b)

(
v1 − μ

g

)
z

= −d
(x− x1)

2

x
+

b(1− α)

eα+ b
βx1v1

[
4− x1

x
− w1xv

wx1v1
− yv1

y1v
− y1w

yw1

]
+

(e+ b)α

eα+ b
βx1v1

[
3− x1

x
− yv1

y1v
− y1xv

yx1v1

]
+

adr(e+ b)

kβ(eα+ b)

(
1 +

βμ

dg

)
(RB

1 − 1)z.

We have x1, w1, y1, v1 > 0 when RB
0 > 1. Since the geometrical mean is less than or equal to

the arithmetical mean, then

3 ≤ x1
x

+
yv1
y1v

+
y1xv

yx1v1
,

4 ≤ x1
x

+
w1xv

wx1v1
+

yv1
y1v

+
y1w

yw1
.

It follows that, if RB
1 ≤ 1 then

dWB
1

dt ≤ 0 for all x,w, y, v, z > 0. Thus, the solutions of

system (2.1)-(2.5) limit to the largest invariant subset of
{

dWB
1

dt = 0
}

[32]. It can be seen that,

dWB
1

dt = 0 if and only if x(t) = x1, w(t) = w1, y(t) = y1, v(t) = v1 and z(t) = 0. Applying

LaSalle’s invariance principle we obtain that, E1 is GAS. �

Theorem 3. For system (2.1)-(2.5) if RB
1 > 1, then E2 is GAS in

◦
Ω.

Proof. Consider the following Lyapunov function

WB
2 (x,w, y, v, z) = x2H

(
x

x2

)
+

b

eα+ b
w2H

(
w

w2

)
+

e+ b

eα+ b
y2H

(
y

y2

)
+

a(e+ b)

k(eα+ b)
v2H

(
v

v2

)
+

ar(e+ b)

kg(eα+ b)
z2H

(
z

z2

)
.

We note that, WB
2 (x,w, y, v, z) > 0 for all x,w, y, v, z > 0, while WB

2 (x,w, y, v, z) reaches

its global minimum at E2. Calculating the time derivative of WB
2 along the trajectories of
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(2.1)-(2.5) we get

dWB
2

dt
=
(
1− x2

x

)
(λ− dx− βxv) +

b

eα+ b

(
1− w2

w

)
((1− α)βxv − (e+ b)w)

+
e+ b

eα+ b

(
1− y2

y

)
(αβxv + bw − ay) +

a(e+ b)

k(eα+ b)

(
1− v2

v

)
(ky − cv − rvz)

+
ar(e+ b)

kg(eα+ b)

(
1− z2

z

)
(gvz − μz) . (2.9)

Applying λ = dx2 + βx2v2, then Eq. (2.9) becomes:

dWB
2

dt
= −d

(x− x2)
2

x
+ βx2v2

(
1− x2

x

)
+ βx2v − b(1− α)

eα+ b
βxv

w2

w
+

b(e+ b)

eα+ b
w2

− (e+ b)α

eα+ b
βxv

y2
y

− (e+ b)b

eα+ b

y2w

y
+

e+ b

eα+ b
ay2 − ac(e+ b)

k(eα+ b)
v − a(e+ b)

(eα+ b)

yv2
v

+
ac(e+ b)

k(eα+ b)
v2 +

ar(e+ b)

k(eα+ b)
v2z − ar(e+ b)

k(eα+ b)
z2v − arμ(e+ b)

kg(eα+ b)
z +

arμ(e+ b)

kg(eα+ b)
z2.

Using the equilibrium conditions for E2

(1− α)βx2v2 = (e+ b)w2, αβx2v2 + bw2 = ay2, cv2 + rv2z2 = ky2,

we obtain

e+ b

eα+ b
ay2 = βx2v2 =

b(1− α)

eα+ b
βx2v2 +

(e+ b)α

eα+ b
βx2v2,

ac(e+ b)

k(eα+ b)
v2 = βx2v2 − ar(e+ b)

k(eα+ b)
v2z2,

and

dWB
2

dt
= −d

(x− x2)
2

x
+

b(1− α)

eα+ b
βx2v2

(
1− x2

x

)
+

(e+ b)α

eα+ b
βx2v2

(
1− x2

x

)
− b(1− α)

eα+ b
βx2v2

w2xv

wx2v2
+

b(1− α)

eα+ b
βx2v2

− (e+ b)α

eα+ b
βx2v2

y2xv

yx2v2
− b(1− α)

eα+ b
βx2v2

y2w

yw2
+

b(1− α)

eα+ b
βx2v2 +

(e+ b)α

eα+ b
βx2v2

− b(1− α)

eα+ b
βx2v2

yv2
y2v

− (e+ b)α

eα+ b
βx2v2

yv2
y2v

+
b(1− α)

eα+ b
βx2v2 +

(e+ b)α

eα+ b
βx2v2

= −d
(x− x2)

2

x
+

b(1− α)

eα+ b
βx2v2

[
4− x2

x
− w2xv

wx2v2
− yv2

y2v
− y2w

yw2

]
+

(e+ b)α

eα+ b
βx2v2

[
3− x2

x
− yv2

y2v
− y2xv

yx2v2

]
.
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Thus, if RB
1 > 1, then x2, w2, y2, v2, z2 > 0. Using the relation between arithmetical and

geometrical means, we get
dWB

2
dt ≤ 0. Clearly,

dWB
2

dt = 0 if and only if x(t) = x2, w(t) = w2,

y(t) = y2 and v(t) = v2. If v(t) = v2, then v̇(t) = 0 and from Eq. (2.4) we have

0 = ky2 − cv2 − rv2z(t), which gives z(t) = z2. Therefore,
dWB

2
dt equal to zero at E2.

The global stability of E2 follows from LaSalle’s invariance principle. �

Remark 1. The parameter RB
0 is the standard basic infection reproduction number in the

literature of viral infection models. It measures the average number of newly infected cells pro-

duced from any one infected cell at the infection-free equilibrium [1]. Thus, RB
0 is the thresh-

old parameter that determines whether or not a chronic-infection can be established without

humoral immune response. If RB
0 ≤ 1, then the viruses will be cleared from the body. There-

fore, using effective antiviral drug therapy can control and prevent the infection by making

RB
0 ≤ 1. In case of RB

0 > 1, the infection becomes chronic. The parameter RB
1 represents

the humoral immune response activation number and determines whether or not a persistent

humoral immune response can be established. When RB
1 ≤ 1 < RB

0 , the infection always

becomes chronic, but no humoral immune response can be established. When RB
1 > 1, the

infection always becomes chronic with humoral immune response.

3. MODEL WITH SATURATION FUNCTIONAL RESPONSE

In model (2.1)-(2.5), we have assumed that, the incidence rate between the uninfected target

cells and viruses is given by bilinear, i.e., the infection rate per virus and per uninfected cell

is constant. However, this bilinear incidence rate may not completely describe the interaction

process between the viruses and uninfected target cells [33], [34]. In some cases, the saturated

incidence is more reasonable than the bilinear one (see [24], [35] and [36]). In this section, we

modify model (2.1)-(2.5) by assuming that the incidence rate is given by saturation functional

response.

ẋ = λ− dx− βxv

1 + ηv
, (3.1)

ẇ =
(1− α)βxv

1 + ηv
− (e+ b)w, (3.2)

ẏ =
αβxv

1 + ηv
+ bw − ay, (3.3)

v̇ = ky − cv − rvz, (3.4)

ż = gvz − μz, (3.5)

where η > 0 is the saturation constant, and all the variables and parameters of the model have

the same meanings as given previously.

We note that the compact set Ω defined in Section 2 is also positively invariant with respect

to system (3.1)-(3.5).



GLOBAL DYNAMICS OF HUMORAL IMMUNITY VIRAL INFECTION MODELS 147

Lemma 2. For system (3.1)-(3.5) there exist two threshold parameters RS
0 > 0 and RS

1 > 0
with RS

1 < RS
0 such that

(i) if RS
0 ≤ 1, then there exists only one positive equilibrium E0 ∈ Ω,

(ii) if RS
1 ≤ 1 < RS

0 , then there exist only two positive equilibria E0 ∈ Ω and E1 ∈ Ω, and

(iii) if RS
1 > 1, then there exist three positive equilibria E0 ∈ Ω, E1 ∈ Ω and E2 ∈

◦
Ω.

Proof. Similar to the proof of Lemma 1, one can show that system (3.1)-(3.5) admits three

equilibria: infection-free equilibrium E0 = (x0, 0, 0, 0, 0), where x0 = λ/d; chronic-infection

equilibrium without humoral immune response E1 = (x1, w1, y1, v1, 0); chronic-infection

equilibrium with humoral immune response E2 = (x2, w2, y2, v2, z2) where,

x1 =
λ(1 + ηv1)

d(1 + ηv1) + βv1
, w1 =

(1− α)λβv1
(e+ b) [d(1 + ηv1) + βv1]

, y1 =
cv1
k

, v1 =
d
(
RS

0 − 1
)

ηd+ β

x2 =
λ(1 + ηv2)

d(1 + ηv2) + βv2
, w2 =

(1− α)λβv2
(e+ b) [d(1 + ηv2) + βv2]

, y2 =
λβ(eα+ b)v2

a(e+ b) [d(1 + ηv2) + βv2]
,

v2 =
μ

g
, z2 =

c

r
(RS

1 − 1),

and

RS
0 =

kβλ(eα+ b)

adc(e+ b)
and RS

1 =
RS

0

1 +
dημ+ βμ

dg

are the basic infection reproduction number and the humoral immune response activation num-

ber, respectively. It is clear that RS
1 < RS

0 . It is seen that, E0 is usually exists, E1 exists when

RS
0 > 1, and E2 exists when RS

1 > 1. Moreover, it can be easily show that, E0, E1 ∈ Ω and

E2 ∈
◦
Ω. �

3.1. Global stability. In this subsection, we are concerned with the global stability of the

three equilibria of system (3.1)-(3.5). The strategy of the proofs is based on constructing suit-

able Lyapunov functions and applying LaSalle’s invariance principle.

Theorem 4. For system (3.1)-(3.5) if RS
0 ≤ 1, then E0 is GAS in Ω.

Proof. Define a Lyapunov function WS
0 as follows:

WS
0 (x,w, y, v, z) = x0H

(
x

x0

)
+

b

eα+ b
w+

e+ b

eα+ b
y+

a(e+ b)

k(eα+ b)
v+

ar(e+ b)

kg(eα+ b)
z. (3.6)
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Function WS
0 satisfies

dWS
0

dt
=
(
1− x0

x

)(
λ− dx− βxv

1 + ηv

)
+

b

eα+ b

(
(1− α)βxv

1 + ηv
− (e+ b)w

)
+

e+ b

eα+ b

(
αβxv

1 + ηv
+ bw − ay

)
+

a(e+ b)

k(eα+ b)
(ky − cv − rvz)

+
ar(e+ b)

kg(eα+ b)
(gvz − μz)

= −d
(x− x0)

2

x
+

βx0v

1 + ηv
− ac(e+ b)

k(eα+ b)
v − arμ(e+ b)

kg(eα+ b)
z

= −d
(x− x0)

2

x
+

ac(e+ b)

k(eα+ b)
(RS

0 − 1)v − ηac(e+ b)RS
0 v

2

k(eα+ b)(1 + ηv)
− arμ(e+ b)

kg(eα+ b)
z.

(3.7)

Clearly if RS
0 ≤ 1, then

dWS
0

dt ≤ 0 for all x, v, z > 0. Similar to the previous section, one can

easily show that,
dWS

0
dt = 0 at E0. Applying LaSalle’s invariance principle, we obtain that E0

is GAS. �

Theorem 5. For system (3.1)-(3.5) if RS
1 ≤ 1 < RS

0 , then E1 is GAS in Ω.

Proof. We consider the following Lyapunov function

WS
1 (x,w, y, v, z) = x1H

(
x

x1

)
+

b

eα+ b
w1H

(
w

w1

)
+

e+ b

eα+ b
y1H

(
y

y1

)
+

a(e+ b)

k(eα+ b)
v1H

(
v

v1

)
+

ar(e+ b)

kg(eα+ b)
z.

Calculating
dWS

1
dt along the solutions of system (3.1)-(3.5), we get

dWS
1

dt
=
(
1− x1

x

)(
λ− dx− βxv

1 + ηv

)
+

b

eα+ b

(
1− w1

w

)((1− α)βxv

1 + ηv
− (e+ b)w

)
+

e+ b

eα+ b

(
1− y1

y

)(
αβxv

1 + ηv
+ bw − ay

)
+

a(e+ b)

k(eα+ b)

(
1− v1

v

)
(ky − cv − rvz)

+
ar(e+ b)

kg(eα+ b)
(gvz − μz) .
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Applying the condition λ = dx1 +
βx1v1
1+ηv1

we get

dWS
1

dt
=
(
1− x1

x

)
(dx1 − dx) +

βx1v1
1 + ηv1

(
1− x1

x

)
+

βx1v

1 + ηv
− b(1− α)

eα+ b

βxv

1 + ηv

w1

w

+
b(e+ b)

eα+ b
w1 − (e+ b)α

eα+ b

βxv

1 + ηv

y1
y

− (e+ b)b

eα+ b

y1w

y
+

e+ b

eα+ b
ay1 − ac(e+ b)

k(eα+ b)
v

− a(e+ b)

(eα+ b)

yv1
v

+
ac(e+ b)

k(eα+ b)
v1 +

ar(e+ b)

k(eα+ b)
v1z − arμ(e+ b)

kg(eα+ b)
z.

Using the following equilibrium conditions for E1

(1− α)βx1v1
1 + ηv1

= (e+ b)w1,
αβx1v1
1 + ηv1

+ bw1 = ay1, cv1 = ky1,

we obtain

e+ b

eα+ b
ay1 =

ac(e+ b)

k(eα+ b)
v1 =

βx1v1
1 + ηv1

=
b(1− α)

eα+ b

βx1v1
1 + ηv1

+
(e+ b)α

eα+ b

βx1v1
1 + ηv1

,

and

dWS
1

dt
= −d

(x− x1)
2

x
+

b(1− α)

eα+ b

βx1v1
1 + ηv1

(
1− x1

x

)
+

(e+ b)α

eα+ b

βx1v1
1 + ηv1

(
1− x1

x

)
+

βx1v1
1 + ηv1

(
v(1 + ηv1)

v1(1 + ηv)
− v

v1

)
− b(1− α)

eα+ b

βx1v1
1 + ηv1

w1xv(1 + ηv1)

wx1v1(1 + ηv)

+
b(1− α)

eα+ b

βx1v1
1 + ηv1

− (e+ b)α

eα+ b

βx1v1
1 + ηv1

y1xv(1 + ηv1)

yx1v1(1 + ηv)
− b(1− α)

eα+ b

βx1v1
1 + ηv1

y1w

yw1

+
b(1− α)

eα+ b

βx1v1
1 + ηv1

+
(e+ b)α

eα+ b

βx1v1
1 + ηv1

− b(1− α)

eα+ b

βx1v1
1 + ηv1

yv1
y1v

− (e+ b)α

eα+ b

βx1v1
1 + ηv1

yv1
y1v

+
b(1− α)

eα+ b

βx1v1
1 + ηv1

+
(e+ b)α

eα+ b

βx1v1
1 + ηv1

+
ar(e+ b)

k(eα+ b)

(
v1 − μ

g

)
z

= −d
(x− x1)

2

x
+

βx1v1
1 + ηv1

(
−1 +

v(1 + ηv1)

v1(1 + ηv)
− v

v1
+

1 + ηv

1 + ηv1

)
+

b(1− α)

eα+ b

βx1v1
1 + ηv1

[
5− x1

x
− w1xv(1 + ηv1)

wx1v1(1 + ηv)
− y1w

yw1
− yv1

y1v
− 1 + ηv

1 + ηv1

]
+

(e+ b)α

eα+ b

βx1v1
1 + ηv1

[
4− x1

x
− y1xv(1 + ηv1)

yx1v1(1 + ηv)
− yv1

y1v
− 1 + ηv

1 + ηv1

]
+

ar(e+ b)

k(eα+ b)

(
v1 − μ

g

)
z.
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We have

−1 +
v(1 + ηv1)

v1(1 + ηv)
− v

v1
+

1 + ηv

1 + ηv1
= − η(v − v1)

2

v1(1 + ηv1)(1 + ηv)
,

v1 − μ

g
=

dg + μdη + βμ

dgη + gβ
(RS

1 − 1).

Then,
dWS

1
dt can be written as:

dWS
1

dt
= −d

(x− x1)
2

x
− ηβx1(v − v1)

2

(1 + ηv)(1 + ηv1)2

+
b(1− α)

eα+ b

βx1v1
1 + ηv1

[
5− x1

x
− w1xv(1 + ηv1)

wx1v1(1 + ηv)
− y1w

yw1
− yv1

y1v
− 1 + ηv

1 + ηv1

]
+

(e+ b)α

eα+ b

βx1v1
1 + ηv1

[
4− x1

x
− y1xv(1 + ηv1)

yx1v1(1 + ηv)
− yv1

y1v
− 1 + ηv

1 + ηv1

]
+

ar(e+ b)

k(eα+ b)

(
dg + μdη + βμ

dgη + gβ

)
(RS

1 − 1)z. (3.8)

We have x1, w1, y1, v1 > 0 when RS
0 > 1. Since the geometrical mean is less than or equal

to the arithmetical mean, then the third and fourth terms of Eq. (3.8) are less than or equal to

zero. Hence, if RS
1 ≤ 1, then

dWS
1

dt ≤ 0 for all x,w, y, v, z > 0 and
dWS

1
dt = 0 at E1. LaSalle’s

invariance principle implies the global stability of E1. �

Theorem 6. For system (3.1)-(3.5) if RS
1 > 1, then E2 is GAS in

◦
Ω.

Proof. Define

WS
2 (x,w, y, v, z) = x2H

(
x

x2

)
+

b

eα+ b
w2H

(
w

w2

)
+

e+ b

eα+ b
y2H

(
y

y2

)
+

a(e+ b)

k(eα+ b)
v2H

(
v

v2

)
+

ar(e+ b)

kg(eα+ b)
z2H

(
z

z2

)
.

The time derivative of WS
2 along the trajectories of system (3.1)-(3.5) is given by

dWS
2

dt
=
(
1− x2

x

)(
λ− dx− βxv

1 + ηv

)
+

b

eα+ b

(
1− w2

w

)((1− α)βxv

1 + ηv
− (e+ b)w

)
+

e+ b

eα+ b

(
1− y2

y

)(
αβxv

1 + ηv
+ bw − ay

)
+

a(e+ b)

k(eα+ b)

(
1− v2

v

)
(ky − cv − rvz)

+
ar(e+ b)

kg(eα+ b)

(
1− z2

z

)
(gvz − μz) .
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Applying λ = dx2 +
βx2v2
1+ηv2

we get

dWS
2

dt
=
(
1− x2

x

)
(dx2 − dx) +

βx2v2
1 + ηv2

(
1− x2

x

)
+

βx2v

1 + ηv
− b(1− α)

eα+ b

βxv

1 + ηv

w2

w

+
b(e+ b)

eα+ b
w2 − (e+ b)α

eα+ b

βxv

1 + ηv

y2
y

− (e+ b)b

eα+ b

y2w

y
+

e+ b

eα+ b
ay2

− ac(e+ b)

k(eα+ b)
v − a(e+ b)

(eα+ b)

yv2
v

+
ac(e+ b)

k(eα+ b)
v2 +

ar(e+ b)

k(eα+ b)
v2z

− arμ(e+ b)

kg(eα+ b)
z − ar(e+ b)

k(eα+ b)
z2v +

arμ(e+ b)

kg(eα+ b)
z2.

Using the other equilibrium conditions for E2:

(1− α)βx2v2
1 + ηv2

= (e+ b)w2,
αβx2v2
1 + ηv2

+ bw2 = ay2, cv2 + rv2z2 = ky2,

we obtain

e+ b

eα+ b
ay2 =

βx2v2
1 + ηv2

=
b(1− α)

eα+ b

βx2v2
1 + ηv2

+
(e+ b)α

eα+ b

βx2v2
1 + ηv2

,

ac(e+ b)

k(eα+ b)
v2 =

βx2v2
1 + ηv2

− ar(e+ b)

k(eα+ b)
v2z2,

and thus,

dWS
2

dt
= −d

(x− x2)
2

x
+

b(1− α)

eα+ b

βx2v2
1 + ηv2

(
1− x2

x

)
+

(e+ b)α

eα+ b

βx2v2
1 + ηv2

(
1− x2

x

)
+

βx2v2
1 + ηv2

(
v(1 + ηv2)

v2(1 + ηv)
− v

v2

)
− b(1− α)

eα+ b

βx2v2
1 + ηv2

w2xv(1 + ηv2)

wx2v2(1 + ηv)

+
b(1− α)

eα+ b

βx2v2
1 + ηv2

− (e+ b)α

eα+ b

βx2v2
1 + ηv2

y2xv(1 + ηv2)

yx2v2(1 + ηv)

− b(1− α)

eα+ b

βx2v2
1 + ηv2

y2w

yw2
+

b(1− α)

eα+ b

βx2v2
1 + ηv2

+
(e+ b)α

eα+ b

βx2v2
1 + ηv2

− b(1− α)

eα+ b

βx2v2
1 + ηv2

yv2
y2v

− (e+ b)α

eα+ b

βx2v2
1 + ηv2

yv2
y2v

+
b(1− α)

eα+ b

βx2v2
1 + ηv2

+
(e+ b)α

eα+ b

βx2v2
1 + ηv2

= −d
(x− x2)

2

x
− ηβx2(v − v2)

2

(1 + ηv)(1 + ηv2)2

+
b(1− α)

eα+ b

βx2v2
1 + ηv2

[
5− x2

x
− w2xv(1 + ηv2)

wx2v2(1 + ηv)
− yv2

y2v
− y2w

yw2
− 1 + ηv

1 + ηv2

]
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+
(e+ b)α

eα+ b

βx2v2
1 + ηv2

[
4− x2

x
− yv2

y2v
− y2xv(1 + ηv2)

yx2v2(1 + ηv)
− 1 + ηv

1 + ηv2

]
.

If follows that, if RS
1 > 1, then x2, w2, y2, v2, z2 > 0. Similar to the proof of Theorem 3, one

can show that E2 is GAS. �

4. MODEL WITH GENERAL INCIDENCE AND NEUTRALIZATION RATES

In this section, we propose a viral infection model with latently infected cells and humoral

immune response. We assume that the contacts between the viruses and uninfected target

cells are given by an incidence function f(x, v). This form of incidence rate is general to

encompass several forms of commonly used incidence rates such as bilinear incidence βxv

[22], [28], saturated incidence βxv
1+ηv [25] and nonlinear incidence in the form f(x, v)v [27]. In

[34] and [37], the viral infection models with general incidence rate f(x, v) have been studied,

but without taking the humoral immune response into consideration. Further, we assume that

the neutralization rate of viruses and the activation rate of B cells are given by rvh(z) and

gvh(z), respectively, where h(z) is a general nonlinear function. These forms can be seen as

a generalization of the widely used bilinear forms qzv and rzv that appear in several papers

(see e.g. [22]-[28]). Furthermore, we assume that the removal rate of the B cells is given by

a general function μh(z) which generalizes the linear removal rate μz presented in [22]-[28].

Based on the above considerations, we propose the following model:

ẋ = λ− dx− f(x, v), (4.1)

ẇ = (1− α)f(x, v)− (e+ b)w, (4.2)

ẏ = αf(x, v) + bw − ay, (4.3)

v̇ = ky − cv − rvh(z), (4.4)

ż = gvh(z)− μh(z), (4.5)

Functions f and h are continuously differentiable and satisfy the following assumptions:

Assumption A1. (i) f(x, v) > 0 and f(0, v) = f(x, 0) = 0 for all x > 0, v > 0,

(ii)
∂f(x,v)

∂x > 0, ∂f(x,v)
∂v > 0 and

∂f(x,0)
∂v > 0 for all x > 0, v > 0.

Assumption A2. (i) f(x, v) ≤ v ∂f(x,0)
∂v , x, v > 0,

(ii)
d

dx

(
∂f(x, 0)

∂v

)
> 0 for all x > 0.

Assumption A3. (i) h(z) > 0 for all z > 0, h(0) = 0,

(ii) h′(z) > 0 for all z > 0,
(iii) h(z) ≥ ξz for all z ≥ 0, ξ > 0.

4.1. Positive invariance. Proposition 2. Assume that Assumptions A1 and A3 are satisfied,

then there exist positive numbers Mi, i = 1, 2, 3 such that the compact set

Ω1 =
{
(x,w, y, v, z) ∈ R5

≥0 : 0 ≤ x,w, y ≤ M1, 0 ≤ v ≤ M2, 0 ≤ z ≤ M3

}
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is positively invariant.

Proof. We have

ẋ |x=0= λ > 0, (4.6)

ẇ |w=0= (1− α)f(x, v) ≥ 0 for all x, v ≥ 0, (4.7)

ẏ |y=0= αf(x, v) + bw ≥ 0 for all x,w, v ≥ 0, (4.8)

v̇ |v=0= ky ≥ 0 for all y ≥ 0, (4.9)

ż |z=0= 0. (4.10)

Hence, the orthant R5
≥0 is positively invariant for system (4.1)-(4.5).

Similar to the proof of Proposition 1, one can show that, 0 ≤ x(t), w(t), y(t) ≤ M1 if

0 ≤ x(0) + w(0) + y(0) ≤ M1, where M1 = L1. Let Y (t) = v(t) + r
gz(t), then

Ẏ = ky − cv − rμ

g
h(z) ≤ ky − cv − rμ

g
ξz ≤ kM1 − s3

(
v +

r

g
z

)
= kM1 − s3Y,

where s3 = min{c, ξμ}. Hence Y (t) ≤ M2, if Y (0) ≤ M2, where M2 =
kM1

s3
. Since

v(t) ≥ 0 and z(t) ≥ 0, then 0 ≤ v(t) ≤ M2 and 0 ≤ z(t) ≤ M3 if 0 ≤ v(0) + r
gz(0) ≤ M2,

where M3 =
gM2

r . �

4.2. Equilibria and biological thresholds. In this subsection, we calculate the equilibria of

model (4.1)-(4.5) and derive two threshold parameters.

Lemma 3. For system (4.1)-(4.5), assume that Assumptions A1-A3 are satisfied, then there

exist two threshold parameters RG
0 > 0 and RG

1 > 0 with RG
1 < RG

0 such that

(i) if RG
0 ≤ 1, then there exists only one positive equilibrium E0 ∈ Ω1,

(ii) if RG
1 ≤ 1 < RG

0 , then there exist only two positive equilibria E0 ∈ Ω1 and E1 ∈ Ω1,

and

(iii) if RG
1 > 1, then there exist three positive equilibria E0 ∈ Ω1, E1 ∈ Ω1 and E2 ∈

◦
Ω1.

Proof. Let E(x,w, y, v, z) be any equilibrium of system (4.1)-(4.5) satisfying the following

equations:

λ− dx− f(x, v) = 0, (4.11)

(1− α)f(x, v)− (e+ b)w = 0, (4.12)

αf(x, v) + bw − ay = 0, (4.13)

ky − cv − rvh(z) = 0, (4.14)

(gv − μ)h(z) = 0. (4.15)
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Since h(0) = 0, then Eq. (4.15) has two possible solutions, z = 0 or v = μ/g. If z = 0, then

from Eqs. (4.12) and (4.13) we obtain w and y as:

w =
(1− α)f(x, v)

e+ b
, y =

(eα+ b)f(x, v)

a(e+ b)
. (4.16)

Substituting Eq. (4.16) into Eq. (4.14), we obtain

k(eα+ b)f(x, v)

a(e+ b)
− cv = 0. (4.17)

Using Assumption A1, we have v = 0 is one of the solutions of Eq. (4.17). This yields

w = y = 0 and x = x0 which leads to the infection-free equilibrium E0 = (x0, 0, 0, 0, 0),
where x0 = λ/d. If v �= 0, then from Eqs. (4.11) and (4.17) we obtain

v =
k(eα+ b)f(x, v)

ac(e+ b)
=

k(eα+ b)(λ− dx)

ac(e+ b)
, (4.18)

⇒ x = x0 − ac(e+ b)

dk(eα+ b)
v. (4.19)

Then, Eq. (4.17) becomes

k(eα+ b)

a(e+ b)
f

(
x0 − ac(e+ b)

dk(eα+ b)
v, v

)
− cv = 0.

Let us define a function Ψ1 as:

Ψ1(v) =
k(eα+ b)

a(e+ b)
f

(
x0 − ac(e+ b)

dk(eα+ b)
v, v

)
− cv = 0.

It is clear from Assumption 1 that, Ψ1(0) = 0, and when v = v = x0dk(eα+b)
ac(e+b) > 0, then

Ψ1(v) =
k(eα+ b)

a(e+ b)
f (0, v)− cv = −cv < 0.

Since Ψ1(v) is continuous for all v ≥ 0, then we have

Ψ′
1(0) =

k(eα+ b)

a(e+ b)

[
− ac(e+ b)

dk(eα+ b)

∂f(x0, 0)

∂x
+

∂f(x0, 0)

∂v

]
− c.

From Assumption A1 we have
∂f(x0,0)

∂x = 0, then

Ψ′
1(0) =

k(eα+ b)

a(e+ b)

∂f(x0, 0)

∂v
− c = c

(
k(eα+ b)

ac(e+ b)

∂f(x0, 0)

∂v
− 1

)
.

Therefore, if Ψ′
1(0) > 0 i.e.,

k(eα+ b)

ac(e+ b)

∂f(x0, 0)

∂v
> 1,

then there exist a v1 ∈ (0, v) such that Ψ1(v1) = 0. From Eq. (4.14) we obtain y1 =
c
kv1 > 0.

Let v = v1 in Eq. (4.11) and define a function Ψ2 as:

Ψ2(x) = λ− dx− f(x, v1) = 0.
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Using Assumption A1 we have Ψ2(0) = λ > 0 and Ψ2(x0) = −f(x0, v1) < 0. Since f
is a strictly increasing function of x, then Ψ2 is a strictly decreasing function of x, and there

exists a unique x1 ∈ (0, x0) such that Ψ2(x1) = 0. It follows that, w1 = (1−α)f(x1,v1)
e+b >

0. It means that, a chronic-infection equilibrium without humoral immune response E1 =

(x1, w1, y1, v1, 0) exists when
k(eα+b)
ac(e+b)

∂f(x0,0)
∂v > 1. Now we are ready to define the basic

infection reproduction number as:

RG
0 =

k(eα+ b)

ac(e+ b)

∂f(x0, 0)

∂v
.

The other possibility of Eq. (4.15) is v2 =
μ

g
. Substituting v = v2 in Eq. (4.11) and defining a

function Ψ3 as:

Ψ3(x) = λ− dx− f(x, v2) = 0.

According to Assumption A1, Ψ3 is a strictly decreasing function of x. Clearly, Ψ3(0) = λ > 0
and Ψ3(x0) = −f(x0, v2) < 0. Thus, there exists a unique x2 ∈ (0, x0) such that Ψ3(x2) = 0.

It follows from Eqs. (4.12)-(4.14) that,

w2 =
(1− α)f(x2, v2)

e+ b
, y2 =

(eα+ b)f(x2, v2)

a(e+ b)
, h(z2) =

c

r

[
k(eα+ b)f(x2, v2)

ac(e+ b)v2
− 1

]
.

Clearly, w2, y2 > 0. Since h is continuous and strictly increasing function with h(0) = 0, then

h−1 exists and it is also continuous and strictly increasing [38]. Thus, if
k(eα+b)f(x2,v2)

ac(e+b)v2
> 1,

then z2 = h−1
(
c
r

(
k(eα+b)f(x2,v2)

ac(e+b)v2
− 1
))

> 0. We define the humoral immune response

activation number as:

RG
1 =

k(eα+ b)f(x2, v2)

ac(e+ b)v2
.

Hence, z2 can be rewritten as z2 = h−1
(
c
r (R

G
1 − 1)

)
. It follows that, there exists a chronic-

infection equilibrium with humoral immune response E2 = (x2, w2, y2, v2, z2) when RG
1 > 1.

Assumptions A1 and A2 imply that

RG
1 =

k(eα+ b)f(x2, v2)

ac(e+ b)v2
≤ k(eα+ b)

ac(e+ b)

∂f(x2, 0)

∂v
<

k(eα+ b)

ac(e+ b)

∂f(x0, 0)

∂v
= RG

0 .

Similar to the proof of Lemma 1, one can show that E0 ∈ Ω1, E1 ∈ Ω1 and 0 < x2, w2, y2 <
M1. Now we show that if RG

1 > 1, then 0 < v2 < M2 and 0 < z2 < M3. From the

equilibrium conditions of E2, we have

cv2 + rv2h(z2) = ky2.

Then

cv2 < ky2 ⇒ 0 < v2 <
k

c
M1 ≤ M2,

rv2ξz2 ≤ rv2h(z2) < ky2 ⇒ 0 < z2 <
gky2
rμξ

≤ gk

rs3
M1 = M3.
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It follows that, E2 ∈
◦
Ω1. �

4.3. Global stability analysis. In this subsection, we establish the global stability of the three

equilibria of system (4.1)-(4.5) employing the direct Lyapunov method and LaSalle’s invari-

ance principle. To do so we need the following condition:

Assumption A4.(
f(x, v)

f(x, vi)
− v

vi

)(
1− f(x, vi)

f(x, v)

)
≤ 0, x, v > 0, i = 1, 2.

Theorem 7. For system (4.1)-(4.5), assume that Assumptions A1-A3 hold and that RG
0 ≤ 1,

then E0 is GAS in Ω1.

Proof. Define a Lyapunov functional WG
0 as follows:

WG
0 (x,w, y, v, z) = x− x0 −

x∫
x0

lim
v→0+

f(x0, v)

f(θ, v)
dθ +

b

eα+ b
w +

e+ b

eα+ b
y

+
a(e+ b)

k(eα+ b)
v +

ar(e+ b)

kg(eα+ b)
z.

We note that, WG
0 (x,w, y, v, z) > 0 for x,w, y, v, z > 0 and WG

0 (x0, 0, 0, 0, 0) = 0. Calcu-

lating
dWG

0
dt along the trajectories of (4.1)-(4.5) we obtain

dWG
0

dt
=

(
1− lim

v→0+

f(x0, v)

f(x, v)

)
(λ− dx− f(x, v)) +

b

eα+ b
((1− α)f(x, v)− (e+ b)w)

+
e+ b

eα+ b
(αf(x, v) + bw − ay) +

a(e+ b)

k(eα+ b)
(ky − cv − rvh(z))

+
ar(e+ b)

kg(eα+ b)
(gvh(z)− μh(z))

= λ

(
1− ∂f(x0, 0)/∂v

∂f(x, 0)/∂v

)(
1− x

x0

)
+ f(x, v)

∂f(x0, 0)/∂v

∂f(x, 0)/∂v

− ac(e+ b)

k(eα+ b)
v − arμ(e+ b)

kg(eα+ b)
h(z)

≤ λ

(
1− ∂f(x0, 0)/∂v

∂f(x, 0)/∂v

)(
1− x

x0

)
+ v

∂f(x0, 0)

∂v
− ac(e+ b)

k(eα+ b)
v − arμ(e+ b)

kg(eα+ b)
h(z)

= λ

(
1− ∂f(x0, 0)/∂v

∂f(x, 0)/∂v

)(
1− x

x0

)
+

ac(e+ b)

k(eα+ b)

(
k(eα+ b)

ac(e+ b)

∂f(x0, 0)

∂v
− 1

)
v

− arμ(e+ b)

kg(eα+ b)
h(z)
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= λ

(
1− ∂f(x0, 0)/∂v

∂f(x, 0)/∂v

)(
1− x

x0

)
+

ac(e+ b)

k(eα+ b)
(RG

0 − 1)v − arμ(e+ b)

kg(eα+ b)
h(z). (4.20)

Based on Assumption A2, the first term of Eq. (4.20) is less than or equal to zero. Therefore,

if RG
0 ≤ 1, then

dWG
0

dt ≤ 0 for all x, v, z > 0. Similar to the Section 2, one can show that E0 is

GAS. �

Lemma 4. Suppose that Assumptions A1-A4 are satisfied and RG
0 > 1. Then x1, x2, v1, v2

exist satisfying

sgn(x2 − x1) = sgn(v1 − v2) = sgn(RG
1 − 1).

Proof. From Assumptions A1 and A2, for x1, x2, v1, v2 > 0, we have

(f(x2, v1)− f(x1, v1)) (x2 − x1) > 0, (4.21)

(f(xi, v2)− f(xi, v1)) (v2 − v1) > 0, i = 1, 2. (4.22)

Using Assumption A4 with i = 1, x = x1 and v = v2, we get

(f(x1, v2)v1 − f(x1, v1)v2) (f(x1, v2)− f(x1, v1)) ≤ 0.

It follows from inequality (4.22) that

((f(x1, v2)v1 − f(x1, v1)v2)) (v1 − v2) > 0. (4.23)

Suppose that, sgn (x2 − x1) = sgn (v2 − v1). Using the conditions of the equilibria E1 and

E2 we have

(λ− dx2)− (λ− dx1) = f(x2, v2)− f(x1, v1)

= f(x2, v2)− f(x2, v1) + f(x2, v1)− f(x1, v1),

and from inequalities (4.21) and (4.22) we get:

sgn (x1 − x2) = sgn (x2 − x1) ,

which leads to a contradiction. Thus, sgn (x2 − x1) = sgn (v1 − v2) . Using the equilibrium

conditions for E1 we have
k(eα+b)
ac(e+b)

f(x1,v1)
v1

= 1, then

RG
1 − 1 =

k(eα+ b)

ac(e+ b)

(
f(x2, v2)

v2
− f(x1, v1)

v1

)
=

k(eα+ b)

ac(e+ b)

(
1

v2
(f(x2, v2)− f(x1, v2)) +

1

v1v2
(f(x1, v2)v1 − f(x1, v1)v2)

)
.

From inequalities (4.21) and (4.23) we get sgn
(
RG

1 − 1
)
= sgn (v1 − v2) . �

Theorem 8. For system (4.1)-(4.5), assume that Assumptions A1-A4 hold and that RG
1 ≤

1 < RG
0 , then E1 is GAS in Ω1.
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Proof. We construct the following Lyapunov functional

WG
1 (x,w, y, v, z) = x− x1 −

x∫
x1

f(x1, v1)

f(θ, v1)
dθ +

b

eα+ b
w1H

(
w

w1

)

+
e+ b

eα+ b
y1H

(
y

y1

)
+

a(e+ b)

k(eα+ b)
v1H

(
v

v1

)
+

ar(e+ b)

kg(eα+ b)
z.

Function WG
1 (x,w, y, v, z) > 0 for x,w, y, v, z > 0, WG

1 (x1, w1, y1, v1, 0) = 0 and its time

derivative along the trajectories of (4.1)-(4.5) is given by

dWG
1

dt
=

(
1− f(x1, v1)

f(x, v1)

)
(λ− dx− f(x, v))

+
b

eα+ b

(
1− w1

w

)
((1− α)f(x, v)− (e+ b)w)

+
e+ b

eα+ b

(
1− y1

y

)
(αf(x, v) + bw − ay)

+
a(e+ b)

k(eα+ b)

(
1− v1

v

)
(ky − cv − rvh(z))

+
ar(e+ b)

kg(eα+ b)
(gvh(z)− μh(z)) . (4.24)

Applying λ = dx1 + f(x1, v1) and collecting terms of Eq. (4.24) we get

dWG
1

dt
=

(
1− f(x1, v1)

f(x, v1)

)
(dx1 − dx) + f(x1, v1)

(
1− f(x1, v1)

f(x, v1)

)
+ f(x, v)

f(x1, v1)

f(x, v1)
− b(1− α)

eα+ b
f(x, v)

w1

w
+

b(e+ b)

eα+ b
w1 − (e+ b)α

eα+ b
f(x, v)

y1
y

− (e+ b)b

eα+ b

y1w

y
+

e+ b

eα+ b
ay1 − ac(e+ b)

k(eα+ b)
v − a(e+ b)

(eα+ b)

yv1
v

+
ac(e+ b)

k(eα+ b)
v1

+
ar(e+ b)

k(eα+ b)
v1h(z)− arμ(e+ b)

kg(eα+ b)
h(z).

Using the equilibrium conditions for E1:

(1− α)f(x1, v1) = (e+ b)w1, αf(x1, v1) + bw1 = ay1, cv1 = ky1,

we obtain

e+ b

eα+ b
ay1 =

ac(e+ b)

k(eα+ b)
v1 = f(x1, v1) =

b(1− α)

eα+ b
f(x1, v1) +

(e+ b)α

eα+ b
f(x1, v1),
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and thus

dWG
1

dt
= dx1

(
1− f(x1, v1)

f(x, v1)

)(
1− x

x1

)
+

b(1− α)

eα+ b
f(x1, v1)

(
1− f(x1, v1)

f(x, v1)

)
+

(e+ b)α

eα+ b
f(x1, v1)

(
1− f(x1, v1)

f(x, v1)

)
+ f(x1, v1)

(
f(x, v)

f(x, v1)
− v

v1

)
− b(1− α)

eα+ b
f(x1, v1)

w1f(x, v)

wf(x1, v1)
+

b(1− α)

eα+ b
f(x1, v1)− (e+ b)α

eα+ b
f(x1, v1)

y1f(x, v)

yf(x1, v1)

− b(1− α)

eα+ b
f(x1, v1)

y1w

yw1
+

b(1− α)

eα+ b
f(x1, v1) +

(e+ b)α

eα+ b
f(x1, v1)

− b(1− α)

eα+ b
f(x1, v1)

yv1
y1v

− (e+ b)α

eα+ b
f(x1, v1)

yv1
y1v

+
b(1− α)

eα+ b
f(x1, v1)

+
(e+ b)α

eα+ b
f(x1, v1) +

ar(e+ b)

k(eα+ b)

(
v1 − μ

g

)
h(z)

= dx1

(
1− f(x1, v1)

f(x, v1)

)(
1− x

x1

)
+ f(x1, v1)

(
f(x, v)

f(x, v1)
− v

v1
− 1 +

vf(x, v1)

v1f(x, v)

)
+

b(1− α)

(eα+ b)
f(x1, v1)

[
5− f(x1, v1)

f(x, v1)
− w1f(x, v)

wf(x1, v1)
− y1w

yw1
− yv1

y1v
− vf(x, v1)

v1f(x, v)

]
+

(e+ b)α

(eα+ b)
f(x1, v1)

[
4− f(x1, v1)

f(x, v1)
− y1f(x, v)

yf(x1, v1)
− yv1

y1v
− vf(x, v1)

v1f(x, v)

]
+

ar(e+ b)

k(eα+ b)

(
v1 − μ

g

)
h(z). (4.25)

Eq. (4.25) can be written as

dWG
1

dt
= dx1

(
1− f(x1, v1)

f(x, v1)

)(
1− x

x1

)
+ f(x1, v1)

(
f(x, v)

f(x, v1)
− v

v1

)(
1− f(x, v1)

f(x, v)

)
+

b(1− α)

(eα+ b)
f(x1, v1)

[
5− f(x1, v1)

f(x, v1)
− w1f(x, v)

wf(x1, v1)
− y1w

yw1
− yv1

y1v
− vf(x, v1)

v1f(x, v)

]
+

(e+ b)α

(eα+ b)
f(x1, v1)

[
4− f(x1, v1)

f(x, v1)
− y1f(x, v)

yf(x1, v1)
− yv1

y1v
− vf(x, v1)

v1f(x, v)

]
+

ar(e+ b)

k(eα+ b)
(v1 − v2)h(z). (4.26)

From Assumptions A1 and A4, we get that the first and second terms of Eq. (4.26) are less than

or equal to zero. Because the geometrical mean is less than or equal to the arithmetical mean,

the third and fourth terms of Eq. (4.26) are less than or equal to zero. Lemma 4 implies that, if

RG
1 ≤ 1, then v1 ≤ v2. Therefore, if RG

1 ≤ 1, then
dWG

1
dt ≤ 0 for all x,w, y, v, z > 0, where

the equality occurs at the equilibrium E1. LaSalle’s invariance principle implies the global
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stability of E1. �

Theorem 9. For system (4.1)-(4.5), suppose that Assumptions A1-A4 are satisfied and

RG
1 > 1, then E2 is GAS in

◦
Ω1.

Proof. We construct the following Lyapunov functional

WG
2 (x,w, y, v, z) = x− x2 −

x∫
x2

f(x2, v2)

f(θ, v2)
dθ +

b

eα+ b
w2H

(
w

w2

)
+

e+ b

eα+ b
y2H

(
y

y2

)

+
a(e+ b)

k(eα+ b)
v2H

(
v

v2

)
+

ar(e+ b)

kg(eα+ b)

⎛⎝z − z2 −
z∫

z2

h(z2)

h(θ)
dθ

⎞⎠ .

Function WG
2 (x,w, y, v, z) > 0 for x,w, y, v, z > 0 and WG

2 (x2, w2, y2, v2, z2) = 0. We

calculate the time derivative of WG
2 along the trajectories of (4.1)-(4.5) as:

dWG
2

dt
=

(
1− f(x2, v2)

f(x, v2)

)
(λ− dx− f(x, v))

+
b

eα+ b

(
1− w2

w

)
((1− α)f(x, v)− (e+ b)w)

+
e+ b

eα+ b

(
1− y2

y

)
(αf(x, v) + bw − ay)

+
a(e+ b)

k(eα+ b)

(
1− v2

v

)
(ky − cv − rvh(z))

+
ar(e+ b)

kg(eα+ b)

(
1− h(z2)

h(z)

)
(gvh(z)− μh(z)) . (4.27)

Applying λ = dx2 + f(x2, v2) and collecting terms of Eq. (4.27) we get

dWG
2

dt
=

(
1− f(x2, v2)

f(x, v2)

)
(dx2 − dx) + f(x2, v2)

(
1− f(x2, v2)

f(x, v2)

)
+ f(x, v)

f(x2, v2)

f(x, v2)
− b(1− α)

eα+ b
f(x, v)

w2

w
+

b(e+ b)

eα+ b
w2

− (e+ b)α

eα+ b
f(x, v)

y2
y

− (e+ b)b

eα+ b

y2w

y
+

e+ b

eα+ b
ay2

− ac(e+ b)

k(eα+ b)
v − a(e+ b)

(eα+ b)

yv2
v

+
ac(e+ b)

k(eα+ b)
v2 +

ar(e+ b)

k(eα+ b)
v2h(z)

− arμ(e+ b)

kg(eα+ b)
h(z)− ar(e+ b)

k(eα+ b)
h(z2)v +

arμ(e+ b)

kg(eα+ b)
h(z2).

Using the equilibrium conditions for E2

(1− α)f(x2, v2) = (e+ b)w2, αf(x2, v2) + bw2 = ay2, ky2 = cv2 + rv2h(z2), μ = gv2,
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we obtain

e+ b

eα+ b
ay2 = f(x2, v2) =

b(1− α)

eα+ b
f(x2, v2) +

(e+ b)α

eα+ b
f(x2, v2),

ac(e+ b)

k(eα+ b)
v2 = f(x2, v2)− ar(e+ b)

k(eα+ b)
v2h(z2),

and then

dWG
2

dt
= dx2

(
1− f(x2, v2)

f(x, v2)

)(
1− x

x2

)
+

b(1− α)

eα+ b
f(x2, v2)

(
1− f(x2, v2)

f(x, v2)

)
+

(e+ b)α

eα+ b
f(x2, v2)

(
1− f(x2, v2)

f(x, v2)

)
+ f(x2, v2)

(
f(x, v)

f(x, v2)
− v

v2

)
− b(1− α)

eα+ b
f(x2, v2)

w2f(x, v)

wf(x2, v2)
+

b(1− α)

eα+ b
f(x2, v2)

− (e+ b)α

eα+ b
f(x2, v2)

y2f(x, v)

yf(x2, v2)
− b(1− α)

eα+ b
f(x2, v2)

y2w

yw2

+
b(1− α)

eα+ b
f(x2, v2) +

(e+ b)α

eα+ b
f(x2, v2)− b(1− α)

eα+ b
f(x2, v2)

yv2
y2v

− (e+ b)α

eα+ b
f(x2, v2)

yv2
y2v

+
b(1− α)

eα+ b
f(x2, v2) +

(e+ b)α

eα+ b
f(x2, v2)

= dx2

(
1− f(x2, v2)

f(x, v2)

)(
1− x

x2

)
+ f(x2, v2)

(
f(x, v)

f(x, v2)
− v

v2

)(
1− f(x, v2)

f(x, v)

)
+

b(1− α)f(x2, v2)

(eα+ b)

[
5− f(x2, v2)

f(x, v2)
− w2f(x, v)

wf(x2, v2)
− y2w

yw2
− yv2

y2v
− vf(x, v2)

v2f(x, v)

]
+

(e+ b)αf(x2, v2)

(eα+ b)

[
4− f(x2, v2)

f(x, v2)
− y2f(x, v)

yf(x2, v2)
− yv2

y2v
− vf(x, v2)

v2f(x, v)

]
. (4.28)

Thus, if RG
1 > 1, then x2, w2, y2, v2, z2 > 0. From Assumptions A1 and A4, we get that, the

first and second terms of Eq. (4.28) are less than or equal to zero. Since the arithmetical mean

is greater than or equal to the geometrical mean, then
dWG

2
dt ≤ 0, where the equality occurs at

E2. LaSalle’s invariance principle implies the global stability of E2. �

Remark 2. By using Lyapunov direct method, we have established a set of conditions on

f(x, v) and h(z) ensuring the global asymptotic stability of the equilibria of model (4.1)-(4.5).

There are several forms of the incidence rate which satisfy Assumptions A1, A2 and A4 in-

cluding, bilinear incidence βxv, saturated incidence βxv
1+ηv , Holling type II functional response

βxv
1+γx , Hill-type incidence βxmv

γm+xm , Beddington-DeAngelis functional response βxv
1+γx+ηv , Crowley-

Martin functional response βxv
(1+γx)(1+ηv) , where β, γ, η,m > 0. Examples of function h(z)

which satisfy Assumption A3 include h(z) = ξ1z and h(z) = ξ1z + ξ2z
2, where ξ1, ξ2 > 0.
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5. NUMERICAL SIMULATIONS

In this section, we will perform some numerical simulations to confirm our theoretical re-

sults. Let us consider the following model:

ẋ = λ− dx− βxmv

(η1 + xm1) (η2 + vn1)
, (5.1)

ẇ =
(1− α)βxmv

(η1 + xm1) (η2 + vn1)
− (e+ b)w, (5.2)

ẏ =
αβxmv

(η1 + xm1) (η2 + vn1)
+ bw − ay, (5.3)

v̇ = ky − cv − rvz, (5.4)

ż = gvz − μz, (5.5)

where β, η1, η2,m1, n1, m > 0. Assume that 0 < m1 ≤ m, 0 < n1 ≤ 1.

Before performing numerical simulations we have to verify Assumptions A1-A4. We have

f(x, v) =
βxmv

(η1 + xm1) (η2 + vn1)
, h(z) = z. (5.6)

Obviously, f(x, v) > 0, f(0, v) = f(x, 0) = 0 for all x, v > 0. Moreover,

∂f(x, v)

∂x
=

β [η1m+ (m−m1)x
m1 ]xm−1v

(η1 + xm1)2(η2 + vn1)
,

∂f(x, v)

∂v
=

β [η2 + (1− n1)v
n1 ]xm

(η1 + xm1)(η2 + vn1)2
,

∂f(x, 0)

∂v
=

βxm

η2(η1 + xm1)
.

Since, 0 < m1 ≤ m, 0 < n1 ≤ 1, then
∂f(x,v)

∂x > 0, ∂fx,v)
∂v > 0 and

∂f(x,0)
∂v > 0 for all

x, v > 0. Therefore, Assumption A1 is satisfied. We have

f(x, v) = β

(
xm

η1 + xm1

)(
v

η2 + vn1

)
≤ β

(
xm

η1 + xm1

)(
v

η2

)
= v

∂f(x, 0)

∂v
,

then, Assumption A2(i) is satisfied. Also,

d

dx

(
∂f(x, 0)

∂v

)
=

β
[
η1mxm−1 + (m−m1)x

m+m1−1
]

η2 (η1 + xm1)2
> 0, for all x > 0.

It follows that, Assumption A2(ii) is satisfied. Moreover,(
f(x, v)

f(x, vi)
− v

vi

)(
1− f(x, vi)

f(x, v)

)
=

1

(η2 + vn1) (η2 + vn1
i )

[
η2
vi
(vn1 − vn1

i )(vi − v)

+vv2n1−1
i

((
v

vi

)n1

− 1

)((
v

vi

)n1−1

− 1

)]
.
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Since, 0 < n1 ≤ 1, then we have

(vn1 − vn1
i )(vi − v) ≤ 0,((

v

vi

)n1

− 1

)((
v

vi

)n1−1

− 1

)
≤ 0.

Thus, Assumption A4 is satisfied.

Clearly, function h(z) = z satisfies Assumption A3. Thus the global stability results demon-

strated in Theorems 7-9 are valid for model (5.1)-(5.5).

For model (5.1)-(5.5), the parameters RG
0 and RG

1 are given by

RG
0 =

k(eα+ b)

ac(e+ b)

∂f(x0, 0)

∂v
=

kβ(eα+ b)xm0
η2ac(e+ b)(η1 + xm1

0 )
,

RG
1 =

k(eα+ b)f(x2, v2)

ac(e+ b)v2
=

kβ(eα+ b)xm2
ac(e+ b) (η1 + xm1

2 ) (η2 + vn1
2 )

.

Now, we show some numerical results for model (5.1)-(5.5). In Table 1, we provide the values

of some parameters of model (5.1)-(5.5). The effect of the other parameters, β and g on the

dynamical behavior of the system will be discussed below in detail. All computations are

carried out by MATLAB.

TABLE 1. The values of the parameters of model (5.1)-(5.5).

Parameter Value Parameter Value Parameter Value

λ 10 b 0.2 η2 100
d 0.01 a 0.1 n1 0.5
e 0.02 c 3 m 2
m1 1 k 1 β Varied

α 0.5 r 0.5 g Varied

η1 1 μ 0.07

Now we investigate the theoretical results involved in Theorems 7-9. The evolution of the

dynamics of model (5.1)-(5.5) was observed over a time interval [0, 1200]. We have chosen

three different initial conditions:

IC1: x(0) = 500, w(0) = 12, y(0) = 50, v(0) = 18 and z(0) = 0.2,
IC2: x(0) = 650, w(0) = 4, y(0) = 10, v(0) = 4 and z(0) = 0.6,
IC3: x(0) = 800, w(0) = 8, y(0) = 30, v(0) = 9 and z(0) = 0.4.
We use three sets of the parameters β and g to get the following three cases.

Case (I): In this case we choose β = 0.01 and g = 0.001. For this set of parameters, the

values of RG
0 and RG

1 are given by RG
0 = 0.318 < 1 and RG

1 = 0.114 < 1. Figures 1-5

show that, the states of the system eventually approach the infection-free equilibrium E0 =
(1000, 0, 0, 0, 0) for the three initial conditions IC1-IC3. This supports the results of Theorem

7 that the infection-free equilibrium E0 is GAS. In this case, the virus particles will be cleared

from the body.
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FIGURE 1. The evolution of uninfected target cells for model (5.1)-(5.5).

Case (II): By taking β = 0.055 and g = 0.001. With such choice we get, RG
1 = 0.226 <

1 < RG
0 = 1.748. Consequently, based on Lemma 3 and Theorem 8, the system has two

equilibria E0 and E1, and E1 is GAS. Figures 1-5 show that the numerical simulations confirm

our theoretical result given in Theorem 8. It can be observed that, the states of the system

eventually converge to the chronic-infection equilibrium without humoral immune response

E1 = (592.991, 9.250, 38.851, 12.950, 0) for the three initial conditions IC1-IC3. In such

case, the infection becomes chronic but with no persistent humoral immune response.

Case (III): We choose, β = 0.045 and g = 0.01. Then, we calculate RG
0 = 1.43 > 1

and RG
1 = 1.023 > 1. This means that, the system has three equilibria E0, E1 and E2 based

on Lemma 3. Moreover, from Theorem 9, E2 is GAS. From Figures 1-5, we can see that,

our simulation results are consistent with the theoretical results of Theorem 9. We observe

that, the states of the system converge the chronic-infection equilibrium with humoral immune

response E2 = (765.415, 5.332, 22.392, 7, 0.398) for the three initial conditions IC1-IC3. In

this case, the infection becomes chronic but with persistent humoral immune response. Figures

1-4 demonstrate that, when RG
1 > 1, the humoral immune response is activated and it reduces

the concentrations of actively infected cells, latently infected cells and free virus particles and

increases the concentration of uninfected cells.

6. CONCLUSION AND DISCUSSION

In this paper, we have proposed and analyzed three viral infection models with humoral im-

mune response. The models are five dimensional ODEs that describe the interaction between

the uninfected target cells, latently infected cells, actively infected cells, free virus particles and

B cells. The incidence rate has been represented by bilinear infection rate and saturation func-

tional response in the first and second models, respectively, while it has been given by a more
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FIGURE 2. The evolution of latently infected cells for model (5.1)-(5.5).
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FIGURE 3. The evolution of actively infected cells for model (5.1)-(5.5).

general function in the third one. The neutralization rate of viruses has been given by bilinear

form in the first two models, while it is given by a general function in the third one. For each

model, we have derived two threshold parameters, the basic infection reproduction number and

the humoral immune response activation number. The global stability of the models has been

established using Lyapunov method and applying LaSalle’s invariance principle. In case of the

third model, sufficient conditions have been established which guarantee the global stability of

all equilibria of the models. Numerical simulations have been performed for the third model
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FIGURE 4. The evolution of free virus particles for model (5.1)-(5.5).
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FIGURE 5. The evolution of B cells for model (5.1)-(5.5).

with a special forms of the functions f(x, v) and h(z). We have shown that both numerical and

theoretical results are consistent.

6.1. Effects of latently infected cells on the dynamics and controls of viral infection. In

this subsection, we show the effect of the presence of latently infected cells on the dynamics

and controls of the viral infection. Let us consider two models, the first with latently infected

cells and the second without latently infected cells. In both model we incorporate two types of

antiviral drugs, reverse transcriptase inhibitors (RTIs) which prevent the virus from infecting
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the target cells and protease inhibitors (PIs) which prevent the infected cells from producing

new infectious viruses. The inclusion of RTIs and PIs allow us to determine the range of drug

efficacies that distinguish between the dynamical behaviors of the two models. Model with

latently infected cells is given by:

ẋ = λ− dx− (1− uRT )βx
mv

(η1 + xm1) (η2 + vn1)
, (6.1)

ẇ =
(1− uRT )(1− α)βxmv

(η1 + xm1) (η2 + vn1)
− (e+ b)w, (6.2)

ẏ =
(1− uRT )αβx

mv

(η1 + xm1) (η2 + vn1)
+ bw − ay, (6.3)

v̇ = (1− uPI)ky − cv − rvz, (6.4)

ż = gvz − μz, (6.5)

where uRT , uPI ∈ [0, 1) are the drug efficacies of RTIs and PIs. Let us define u = uRT +
uPI − uRTuPI , then (1 − u) = (1 − uRT )(1 − uPI). Consequently, the parameters RG

0 and

RG
1 are given by

RG
0 (u) =

(1− u)kβ(eα+ b)xm0
η2ac(e+ b)(η1 + xm1

0 )
,

RG
1 (u) =

(1− u)kβ(eα+ b)xm2
ac(e+ b) (η1 + xm1

2 ) (η2 + vn1
2 )

.

The model without latently infected cells is given by:

ẋi = λ− dx− (1− uRT )βx
mv

(η1 + xm1)(η2 + vn1)
, (6.6)

ẏ =
(1− uRT )βx

mv

(η1 + xm1)(η2 + vn1)
− ay, (6.7)

v̇ = (1− uPI)ky − cv − rvz, (6.8)

ż = gvz − μz, (6.9)

The two threshold parameters for system (6.6)-(6.9) are given by

R̃G
0 (u) =

(1− u)kβxm0
η2ac(η1 + xm1

0 )
,

R̃G
1 (u) =

(1− u)kβxm2
ac (η1 + xm1

2 ) (η2 + vn1
2 )

.

It is clear that

RG
0 (u) =

(1− u)kβ(eα+ b)xm0
η2ac(e+ b)(η1 + xm1

0 )
<

(1− u)kβxm0
η2ac(η1 + xm1

0 )
= R̃G

0 (u),

RG
1 (u) =

(1− u)kβ(eα+ b)xm2
ac(e+ b) (η1 + xm1

2 ) (η2 + vn1
2 )

<
(1− u)kβxm2

ac (η1 + xm1
2 ) (η2 + vn1

2 )
= R̃G

1 (u).
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It means that, the presence of latently infected cells deceases the two threshold parameters

of the system. We note that, the values of the parameters g, r and μ have no impact on the

values of R̃G
0 (u) and RG

0 (u). This fact seems to suggest that, humoral immune response do

not play a role in clearing the viruses but can play a significant role in reducing the infection

progress. Since the goal is to clear the viruses from the body, then we have to determine the

drug efficacies that make RG
0 (u) ≤ 1 and R̃G

0 (u) ≤ 1 for systems (6.1)-(6.5) and (6.6)-(6.9),

respectively. Now, we calculate the critical drug efficacy (i.e, the efficacy needed in order to

stabilize the system around the infection-free equilibrium). For system (6.1)-(6.5), E0 is GAS

when RG
0 (u) ≤ 1 i.e.,

ucrit1 ≤ u < 1,

ucrit1 = max

{
0,

RG
0 (0)− 1

RG
0 (0)

}
,

For system (6.6)-(6.9), E0 is GAS when R̃G
0 (u) ≤ 1 i.e.,

ucrit2 ≤ u < 1,

ucrit2 = max

{
0,

R̃G
0 (0)− 1

R̃G
0 (0)

}
.

Clearly, RG
0 (0) < R̃G

0 (0) and thus ucrit1 < ucrit2 . Therefore, the drug efficacy necessary to

drive the system to the infection-free equilibrium is actually less for system (6.1)-(6.5) than

that for system (6.6)-(6.9).
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