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GLOBAL EXISTENCE AND ASYMPTOTIC BEHAVIOR OF
A PLATE EQUATION WITH A CONSTANT DELAY TERM
AND LOGARITHMIC NONLINEARITIES

MELOUKA REMIL

ABSTRACT. In this paper, we investigate the viscoelastic plate equa-
tion with a constant delay term and logarithmic nonlinearities. Under
some conditions, we will prove the global existence. Furthermore, we use
weighted spaces to establish a general decay rate of solution.

1. Introduction

In this work, we consider the following Cauchy problem with logarithmic
nonlinearity

(2, 1) + 6() (aNu - /O gl — ) A%u(a, s)ds)

(1.1) e (O)ug (2, t) + po(t)ug(x,t — 7) = uln|u|®  in R*x]0, +oo,
u(z,t) =0, on OR"™x]0, 400/,
w(z,0) = up(x), ue(x,0) = uy (z), in R,
ug(z,t — 1) = folx,t — 1), in R™x]0, ¢[.

Where n > 1, ¢(z) > 0 and (¢(z)) ! = p(z) such that p is a function that will
be defined later. The initial datum ug,u1, fo are given functions belonging to
suitable spaces that will be specified later. g1, us are real functions and g is a
positive non-increasing function defined on R*. Moreover 7 > 0 represents the
time delay term.

It is well known that the logarithmic nonlinearity is distinguished by sev-
eral interesting physical properties. In recent years, there has been a growing
interest in the viscoelastic wave equation, its properties and variants of the
problem can be found for example in ([4,6,10,11,15]). The plate equation in
R™ has been studied by many authors and some results have been proved (see
for instance [1,7,9]) and the references therein.
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In the case of k = 2, T. Cazenave and A. Haraux, in [4] studied the following
problem

upe(,t) + Au — ulog [ul? + up +ulul> =0 in 2x]0,T],
u(z,t) =0, on 90 x]0, T,
u(x,0) = up(x), ut(x,0) = up (z), in Q.

They established the global existence of weak solutions to the problem by
using Galerkin method, logarithmic Sobolev inequality and compactness theo-
rem.
The author in [8] looked into a linear Cauchy viscoelastic problem with
density. He obtained the exponential and polynomial rates by using the spaces
weighted by density to compensate for the lack of Poincare’s inequality.

In the case of delay term, Nicaise, Valein and Fridman in [14] proved an
exponential stability result under the condition p; < /1 — du, where d is a
constant such that 7/(¢) < d < 1. After that, S. Nicaise, C. Pignotti in [13]
considered the following problem

utt(]},t) — AU; = 07 in Q X [O7 +OO[,
u(z,t) =0, on I'p x [0,4o0],
0

(1.2) % = pyug(z,t) + poug(x, t — 7(t)), on Iy x [0,400],
u(x,0) = ug, v’ (x,0) = uy, in Q,
ug(x,t) = fola,t — 7(t)), on I'y x (0,7(0)).

Under suitable assumptions,they proved exponential stability of the solution.
A. Benaissa, A. Benguessoum and S. A. Messaoudi in [2] considered the
wave equation with a weak internal constant delay term

(2, t) — Au+ pg (t)u' (z,t) + pe(t)u' (z,t —7) = 0 on [0, +00],
in a bounded domain, with u” = % and v’ = %. Under appropriate con-
ditions on w1 and pg, they proved global existence of solutions by the Faedo-
Galerking method and establish a decay rate estimate for the energy by using
the multiplier method.

K. Bouhali and F. Ellaggoune in [3] studied in any spaces dimension, a
general decay rate of solutions of viscoelastic wave equations with logarithmic
nonlinearities. Furthermore, they established, under convenient hypotheses on
g and the initial data, the existence of weak solution associated to this equation.

The content of this paper is organized as follows. In Section 2, we provide
assumptions and lemmas that will be used later. In Section 3, we state and
prove the existence result. In Section 4, we prove a result of polynomial stability
of the solution.
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2. Preliminaries

We first recall some basic definitions and abstract results on weighted spaces.
We define the function spaces of our problem and its norm as follows

D2’2(Rn) — {f c L2n/n—4(Rn) / A:vf e LQ(Rn)},

and D%?(R™) can be embedded continuously in L>*/»~*(R"). The space L2(R™)
to be the closure of C§°(R")

1

11 = ([ srvae)’

The space Lﬁ(R") is a separable Hilbert space.

In the following, we will give sufficient conditions and assumptions that
guarantee the global existence of the problem (1.1).
(Hy) : g is a positive bounded function satisfying

(2.1) «@ f/ g(s)ds=1>0, a>0,
0

and there exists a positive non-increasing function H € C?(R™) such that, for
t > 0, we have
(2.2) g'(t) < —H(t)g(t), H(0)=0,
where H is linear or strictly increasing and strictly convex function on (0, 7], r <
1.
(Hz) : According to results in [6]
(1) we can deduce that there exists t; > 0 large enough such that V¢ > ¢,
. . . / _
we have tlggog(s) =0 so tlgglog (s) =0 and g(t1) > 0.
Then
max{g(s), —g'(s)} < min{r, H(s), Ho(s)},
where Hy(t) = H(D(t)), and D is a positive C'! function, with D(0) =
0, for which Hj is strictly increasing and strictly convex function on
(0;7] and
/ 9(s)Ho(—g/(5))ds < oo,
0

(2) For 0 <t <t; we have g(0) < g(t) < g(t1), (g is non-increasing).
Since H is a positive continuous function, then

g'(t) < H(g(t)) < —kg(t), k>0.

(3) Let Hyp* be the convex conjugate of Hy in the sense of Young (see [1]),
then

Ho" = s(Hy) ™' (s) — Ho((Hy)™'(s)), s € (0, (Hy(r)),
and satisfies the following Young’s inequality
AB < Ho"(A) + Ho(B), A€ (0,(Hj(r)), Be(0,r].
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(Hs) : For the functions p, 2 we assume
(1) 1 is a positive function of class C! satisfying:

(2.3) ’5/18‘ <M, M>0.

(2) po is a real function of class C* such that

p2(t) < Bpa(t), 0<B<1
(1) < Wy (1), B >0,
(Hy) : The function p : R — R" satisfies p(z) € C%7(R™) with v € (0,1) and
p € L*(R"), where s = 5=
We also need the following technical lemmas in the course of our investiga-
tion.
Let A1 be the first eigenvalue of the spectral Dirichlet problem

Au = Mu in R, u:@zo in OR™,
on
[Vull2 < wl||Aul,

1
where w = ——=.
VA1

Lemma 2.1 ([5]). Assume that the function p satisfies the assumption (Hy).
Then for any u € D*2(R™) we have

[ullL2@n) < CollAul|p2(rn),

_ . _ 2 2
where Co = ||pl| s, with s = 5—2- and 2 < g < 2%

2n—qgn+4q
Lemma 2.2 ([11]). For any g € C* and p € H3(0,T), we have

72/0 /n g(t — 8)p prdads = g(t)”‘P”% — (¢ 0 9)(1)
+ (o0 = [ aasiel).

t
o)) = [ o= [ 160(6) = o(t) Pads.
Lemma 2.3 ([12]). Let u € D*2(R"™) and c1,co > 0 be two numbers. Then

ot
es) 2 np<w>|u|21n(”' Yz n(1 + 1) ulf < 2 L2 |,

If u is a solution of the problem (1.1) and v € D?*2(R"), then

/p(a:)|u\ln\u|kvdx:/ p(x)uttvdx—/ p(x) AuAvdz
R7Z R"L n

(2.4)

where

t
(2.6) —|—/ aAuAvdx —/ / g(t — s)Au(zx, s)Avdsdz
R" nJo
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+ /n(t)p(x)utvdx + ,ug(t)/ p(x)us(z, t — T)vde.

n

Lemma 2.4 ([11]). Let u € D**(R"). Then we have

(/ (t—s)( s)fu(t))ds)2
< ([ tapo=as) ([ late - 9Pt - atoyas).

Like in [14] we introduce the auxiliary unknown
z2(z,v,t) = w(x,t —77), € R", v € (0,1), ¢t > 0.
Then, we have
Tze(x, v, t) + 2y (2,7, t) = 0.
Therefore the problem (1.1) takes the form

t

uge(x,t) + () (aAQu - / g(t — s)A%u(z, s)ds)

Fpr (t)ue(z, t) + pa(t)z(x, 1(3 t)=ulnul¥, in R"x]0,4o0],
(2.8) Tze(x,7,t) + 25(2,7,t) =0, in R"x]0, +00],

u(z,t) =0, on OR™x]0, 400,

u(z,0) = up(x), ut(x,0) = uy (z), in R™,

2(x,7,0) = fo(x,—77), in R™x]0, ¢[.

First we define the energy of solution by
1 a 1 [
gl + (5 =3 | otoas) jauls
k 2 ko o2
(90 8u)(t) 5 [ plau?nfulde +  ul3,

/ / (z,v,t)dvydx.

Where £ is non-increasing function such that

(2.10) TB<E<T(2-0B), t>0, &) =~Eu(t).

E(t) =

(2.9) +

Lemma 2.5. Let (u,z) be a solution of the problem (2.8). Then, the energy

functional defined by (2.9) satisfies

E'(t) <

N | =

(2.11) 2r 2

(o M22(t))” o

2
- Lo, <o0.

(9" ) — Lgo) Al — (pn(t) — 52— 202,
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Proof. Multiplying the first equation in (2.8) by p(x)u;, integrating over R"
and using Green’s identity, we obtain

1d k
335 (el + all sl + Sl ~ [ pla)uinjufde)
2dt P 2 P R

(2.12) + ,Ul(t)HutH%g + pa(t) / p(x)uz(z, 1, t)dx

R7l
¢
- / g(t —s) Au(z, s)Aug(x, t)dzds = 0.
0 R"

We simplify the last term by using Lemma 2.2, we get

—/ g(t — s) Au(z, s)Aug(x, t)dzds
(2.13) 0 w

1d 1 1
= 3000~ 16" o du)+ ol — 35 [ ool duls

Replacing (2.13) in (2.12) we arrive at

)i
t
(i + (= [ atopas) 1)
2.14 1d k 2 2 k 2
(2.14) To@ §||U||Lg* Rnl)(z)u Inful® + g o Au | + pa()]uellzz
1 1
+ua(t) [ plopuisle. 1o — (g’ 0 Su)+ So(t)] Aul} =0,

Multiplying the second equation in (2.8) by 1&(t)p(x)z, where £(t) satisfying
(2.10) and integrating over R™ x (0, 1), we obtain

(2.15) 5££ // ot

£(t) £(t)
+ 5127 @ LIl — %5 - s = 0.

(z,7,t)dvydx

n

Combination of (2.14) and (2.15), by recalling at the definition of E(t), we
deduce that

B'(t) + i ()35 + a0 / p()ucs(r, 1, )z — (g’ 0 Au)
216)  + Lowlauz- £
@H,zz(x, 1,t

21, >||L,g -

(z,7,t)dvydx

n

()

+ ?HWHZL?) =0,

then

(2.17) E(t) = — (ul(t) U

1 1
) luel2s + (9 0 Aw) = Sg(0)| Aul}
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~1a(t) [ ottt 0t - S22 1,013

/n/ (x,7,t)dvydx.

Due to Young’s inequality and using the assumptions for £(¢) and g, we obtain

(2.18) B(t) < %(9/ o Au) — %g(t)”A“”g = (- %) - m?(t))nmuii
(2O, <o,
where

3. Global existence

According to logarithmic Sobolev inequality and by using Galerkin’s method
combined with compact theorem, similar to the proof in [6], we have the fol-
lowing result

Theorem 3.1 (Local existence). Let (ug, u1, fo) € D*?(R™)x L2(R")x L*(R" x
(0,1)) be given. Assume that g satisfies (H1) and py, po satisfy (Hs). Then
the problem (2.8) admits a unique local solution (u,z) satisfying

u € C([0,T); D**(R")),
u' € C([0,T); LL(R™)),
z € C([0,T); L*(R™ x (0,1)).

Now, we introduce the two functionals as follow

1= (5 3 [ o)) 1sul + 5g0 2u)0)

k ! k
B0 =g [ @i+ ge0) [ 12 e+ Tl

and

k
1(t) = 27(0) - 5l

As in [15] to establish the corresponding method of potential wells which is
related to the logarithmic nonlinear term, we introduce the stable set as follows

W= {u € D22(R" — {0}): I(t) > 0, J(t) < d} u {0},
where d is the mountain pass level defined by

— inf{sup J () },
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with g > 0,u € D?2?(R"™ — {0}). Also, by introducing the set called “Nehari
manifold”

N = {ue DY) — {0}, 1(t) = 0}.

Similar to results in [16], it is readily seen that the potential depth d is char-
acterized by

d= 1gf J(t).
This characterization of d shows that

diSt(O,N) = 15%% Hu||D2,2(Rn).

By the fact of E’(t) < 0, we will prove the invariance of the set W. That is
if for some ty > 0 if u(ty) € W, then u(t) € W, V¢ > to. Now we give the
existence Lemma of the potential depth (see Lemma 2.4 in [5]).

Lemma 3.2. d is positive constant.

Lemma 3.3. Let u € D**(R"™), and n = exp(% (1 +ac)). If ||u||L2(p) < n, then
10)> 0. I 1) =0, [l # 0, then 32, >

Proof. By Lemma 2.3 we have

J(t) = (o~ / ots )ds) | Aul3 + (g0 Au)(t)

(3.2) —k/ x)u? In juldx 4 £(t // (x,7,t)dydx

I3 k
> (1= ke D) [ A3 + RS (1 +e1) — I ul3a)ullEs + 5 ull2s.

Choosing ¢y < then

wk\lpl\i% ’
n 2 2
(3.3) I(t) 2 k(5 (1 +e1) = I fluflzs)fJullzs-
Therefore if Hu||L2 <, then I(t) > 0.
If I(t) =0, ||uHL2 # 0 we have |[ul|3, > 7. O
Now, we are in position to state the theorem of global existence.

Theorem 3.4 (Global Existence). Let ug € D*?(R™),ui(x) € L2(R™) and
0 < E(0) < d,I(0) > 0. Then, under hypothesis (Hy) and conditions of the
function p, the problem (2.8) has a global solution in time.

Proof. From the definition of energy for the weak solution and since FE is in-
creasing, we have

1 1
§||Ut||2L§ +J(t) < *||U1||2L,2J +J(0), Vt €0, Tmax),
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where Ty i the maximal existence time of weak solution of u. Then, by

the definition of the stable set and using Lemma 3.3, we have u € W, Vt €

[0, Tinax)- O
4. Asymptotic behavior

We apply the multiplier techniques and we introduce an appropriate Lya-
punov functional to obtain the asymptotic behavior. For this purpose, we
introduce the so called Lyapunov functional L defined by

(4.1) L(t) = & E(t) + (1) + &ep(t) +e1o(t), & >1, &>1, &1 >0,
where

v) = [ plajud,
(4.2) o(t) = / pla)u / ot — 5)(u(t) — u(s))dsdz,

<

—~
~

N
Il

1
~¢(0r [ o) [ et - )drde
n 0
Now we present some Lemmas to get the asymptotic behavior of solutions.

Lemma 4.1. Suppose that (Hy)-(Hy) hold and let (ug,u1) € D*?(R™)x L2(R")
be given. If (u, z) is the solution of (2.8), then the derivative of the functional
1 satisfies the following inequality for § > 0.

Pt < (14 %m(t))llmllig +(a=)es(g o Au)(t)

1
43)  + @ = DAul3+ Sub)lz(, L)

kwes kn 1
ol (522 4 3y — 520 e0) 2 i (4) + a6 Al
Proof. By using the first equation in (2.8), we have
(4.4) w0 = [ puuds+ [ pla)ufds
n RW

P (t) = / p(@)|uePde — a | Auldx

R~

(4.5) —|—/n Aut/o g(t — s)Au(z, s)dsdx — ul(t)/ p(x)ugu(z, t)de

n

— pa(t) /n p(x)uz(z, 1, t)dx —|—/ p(x)u? In |ul*dz.

n

We now estimate the right hand side of (4.5) and applying Lemma 2.4, we have
the estimates as follows

/n Au /Otg(t — s)Au(s)dsdx
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= ' S S u 2 u ' — S uls) — u Saxr
@0 = [ aisiauli+ [ Au [ gle—s)(dut) - Aue)isd

t 2
< (6 +a—1)|Aul3 + 05/ (/ g(t — s)|Au(s) — Au(t)|ds) dx
R ~Jo
< (6+a—D)||Au|l3 + (o — Des(g o Au)(t).
By using Young’s inequality, Sobolev’s inequality and Lemma 2.3 we have

(4.7 —pu(t) / p(x)ugu(z, t)dr — pa(t) / p(x)uz(z, 1,t)dz

1 1
< 3 (0 + 1)) I I8l + Sy (1) el + 3o (B2, 1, 0)5,

[\V]

and

/ plx)u’® In |ulfdx = k/ p(sc)uz(lnL2 +1In Hu||2L2)dx
- . [l p

kwcz

\ /\

n
S ol Aul} + k| In flul?s — 2(1+ el

IA

kwcz n
(2l I aul + k| flul2s = 21+ e0)] ) o2 I Aul3.

By combining the last inequalities, we arrive at

() < (1+ %Hl(t))”UtHi? + (a=1Des(g o Au)(t)

(48)  + (0 =Dl Aul3 + uz()ll 2(2,1,0)]7,

kwces

kn 1
ol (o2 kel — 1+ 1) + Sl (0) + ma(0)]) A3

2 0

Lemma 4.2. Suppose that (Hs) is fulfilled and let (uo,u1) € D>*(R™)x L2(R")
be given. If (u, z) is the solution of (2.8), then the derivative of the functional
@ satisfies the following inequality for some § > 0.

dco n(l+c
o0 < o+ k(32 p gz, - LY 2, ) au3
keswes

(et (1 D)l ) (0= Dig o Au)

1 t
~aalpliy (oo )+ (5 S0~ [ o)l

+ M2( = (33’1,75)||2Lg-

Proof. Taking the derivative of ¢, we obtain easily

¢ = = [ olau [ gt = )(u(t) — u(s)dsds
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@) = [ gy [ gt 9t~ u)isdo — [ gls)ashul;
= a/ Au/ g(t — s)(Au(t) — Au(s))dsdx
n 0

_ /Rn (/0 gt — S)AU(S)dS) (/Otg(t — s)(Au(t) — AU(S))dS)d:L‘
+ p1(t) /n p(x)ug /Otg(t — 8)(u(t) — u(s))dsdx

T () / pl@)=(. i) / g(t — s)(u(t) — u(s))dsdz
- / p(z)uln \u|k/ g(t — s)(u(t) — u(s))dsdz
R™ 0

t

_ /R p(x)ut/o g (t — s)(u(t) — u(s))dsdr — /0 Q(S)dSHUt||Lg7

then

O (t) = (a - /Ot g(s)ds) /n Au /Otg(t — 8)(Au(t) — Au(s))dsdx
(4.11) +/Rn (/tg(t—s)(Au(t) —Au(s))ds)de

0

) [ oy [ ot = 9)(u(t)  u)dsda

1) [ @)l p.t) [ ot = o)ult) = uls))dsds

—/ p(a:)uln|u\k/ g(t — s)(u(t) — u(s))dsdz
R 0

t

= [ ot [ g = )alt) — u(s)dsda [ ats)aslunl

0

By Holder’s and Young’s inequalities and Sobolev Poincare’s inequality, we
estimate

(4.12) (a — /Ot g(s)ds) /Rn Au /Ot g(t — s)(Au(t) — Au(s))dsdz

2
< 18]| Aul3 + (csl + 1) (e = 1)(g 0 Au).
And

(413) - m() / ol / g(t — s)(u(t) — u(s))dsde
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— ) [ plo)x(e1.0) [ gt = s)(u(t) — u(s)dsd

< Spa(®)lluelZs + uz( Mz, LONZ: + llollz (o = D (g 0 Au),

l\DM—t

(4.14) - /n p(ac)ut/ g (t — s)(u(t) — u(s))dsdz

< dllull2; — sl / (¢ = s)(u(t) - u(s))ds]3;
< dlluellZs — esllpllza (9" o Aw).

Using Poincare-Sobolev inequality and Lemma 2.3 and conditions in Lemma
3.3, we have

— r)uin |u k t — S)u — Uu\s saxr
@15) = [ plepmpul [ gt =)o) - u(s)dsa
| |k t
< [ ot(in g i) [ ot - ) —u(e)dsds

< (1 ||u||%g—@) Il + 52 o [ o) att)-utsas

n(l+c
P o)z,

Au/ g(t — s)(Au(t) — Au(s))ds

2

2
L7

< k(I ull?; -

kwcz 2

lolZ2

602 n(l+c1)
< k(G2 +Infullfy — =) ol 1 Aul
keswes
+ 2 2 (o = D)(g 0 Au).
Combining these estimates we arrive at
deo n(l+cp)
@'(t) < [+ k(52 +Influllfs — “=52 ) lplEa |1 Aul3

keswes
2T

Jlipl3: ) (o = 1)(g 0 Au)
- C5||,o||’ig (o 0 )+ (54 50— [ o) I3

+ <1 +oesl+(1+
(4.16)

Lemma 4.3. Suppose that (Hy), (Hs) hold and let (ug,u;) € D??(R™) x
L2(R™) be given. If (u,z) is the solution of (2.8), then the derivative of the
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functional ¢(t) satisfies the following inequality
00) < 7€) ~260) [ el
+ & 2z, LT — §(0)[luellZs-

Proof. Differentiating ¢(t), we get

0= =€ [ o) [ R du

(4.17)

(4.18) )
— 2§(t)7'/n p(x)/o 672”2(1',7, t)zi(x, v, t)dzdy.

Using the second equality in (2.8) we obtain

80 = (S8 ~2)0(0) + €0 st 101 - Ol

(4.19) g( )+ 26(t) /Ilzx% Mz2dy

T E(t)e ™ (2 1, 0) 3 — 60 el o

Lemma 4.4. If the functional L satisfies (4.1), then there exists two constants
a1 and o such that

(4.20) a1 B(t) < L(t) < anE(t).

Proof. Using the Cauchy Schwartz and Young’s inequalities, Poincare-Sobolev
inequality and Lemma 2.4, we obtain

IL(t) ~ 6B0)] < (5 + 2 — 8(0) el + 3 o135 A0
+ 2 ol3a (0 (g 0 Awperr(€ (1) +2¢(1)))

x / ()23
0

+er€(t)e™||z(z, L,t) |7, < cE(Y).

Choosing €7 small enough such that

(4.21)

(4.22) IL(t) — &L E()] < cE(1).
Then we can choose £; such that
(4.23) a1 E(t) < L(t) < as E(t). 0

Lemma 4.5. For allt > t; > 0, we have

(g0 Au)(s)ds < H </ Ho(— s)/ S| Ault) — Au(t—s)|2d:nds),

where Hy is introduced in (Hs).

ty
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Proof. By properties of E’' and by (H4) we have for ¢ > ¢,

/ /0 " gt — ) Au(t) - Aus)dsdo

IA

_ %/ /0 "ot — $)|Au(t) — Au(s)[2dsd
< —cE'(t).

We define now
t

X(t) = | Ho(—g'(s))(g o Au)(t)ds.

ty

Since [~ Ho(—g'(s))g(s)ds < 400, we have
0= [ g 6D [ s - suto)dads

(4.24) =2 Ho(=g'(s))g(s) ([ Au(s)|[3 — | Au(t)||3)dzds

<cE(0) [ Ho(—g'(s))g(s) < 1.

t1
We define again a new functional A(t) related with x(¢) as

(4.25) At)=— [ Ho(—g'(s))d'(s) /n g(s)|Au(t) — Au(t — s)|>dads.

t1

From (Hp)-(Hz) and for some positive constant kg, we conclude for all ¢ > ¢;
M) < —ko / (d()) / Au(t) — Ault — s)[2dads
R‘VL
t
<o [(G)) [ IBuOF + | u(t — o) Pdads
t1 R™

t
< —cE(O)/ g'(s)ds < —cE(0)g(t1) < min{r, H(r), Ho(r)}.
t1
Using the properties of Hy(6z) < §Hy(x) and hypothesis in (Hz), (4.25), (4.24)
and Jensen’s inequality we get
N0 = b [ (7 630 B/ ()5 9
X(t) t1 0

x / o(s)| Dut) — Ault — 5)Pdads

Rn
> Ho/t /n g(s)|Au(t) — Au(t — s)|*dzds.

1
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Which implies

/t / g(s)| Au(t) — Au(t — 5)Pdzds < Hy "(A(1)). -

At this point, we can prove the second main result the asymptotic behavior

Theorem 4.6. Let (ug,u1) € D**(R") x L2(R") be given. Assume that g
satisfies (Hy). Then, for eachty > 0, there exist positive constants ny,na, ng, ny
and k such that, for any solution of the problem (2.8), the energy satisfies

(4.26) E(t) < ngH*(ny +n9), Vt>0,
where .
Hi(t) = / (sH}(ngs)) " ds.
¢
Proof. From the definition of L(t) we obtain

(4.27) L'(t) =& E'(t) + ¢/ (t) + &9 (t) + e10(t).
Then
L'(t) < — mollutllig — My || Aull3 + Ma(g o Au)

+ (%~ cstallolis ) (9 0 )

2
1+¢ .
(4.28) — (5 Fad®e a2 1,13
t
-+§lu4a1¢n&2—uxw plaupz(a, 1, t)da
RTL
(x,7,t)dvydx,
hence
L'(t) < — Mollus|[35 — M| Aul3 + Ma(g o Au)
1
(4.29) +(§—q&WM0m—w@ko—MﬂamLm@
+( 1(€(t) +2¢(t) / / (2,7, t)dvydz,
where

My = (51(”22@) +e1€(t) — pa(t) — %) -1+ ,u12(t)

—&-52(5—/0119(5) s Mlz(t)))’
M — & 51 kwes il kn 1 1
1—5mw—(——% k3 = S0+ o) + 50 () + ()
6o (514 k%2 4 g, ~ Pz, creo),
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keswea

— &1+ col + callplloo + (1 +

il ) (@ = 1) + (a = D)es >0,
M= (S0 10 08 ),

At this point, we choose ¢ so small such that
&> 205”/’”%3;52
Whence § is fixed, we can choose & such that My > 0

+ & ((5 - /Ot1 g(s)ds + “12(t)>) > & (5 - /Otg(s)ds),

then for ¢ > t; we can choose

& > (/Otl g(s)ds — 6)_1.

Now choosing 7 small enough such that Mz > 0. After this conditions we
estimate that

L'(t) < Mz(g o Au) — cE'(t).
Now we set F'(t) = L(t) + cE(t), which is equivalent to E(t). Then

F'(t) < —cE(t +c/ / (t — 8)|Au(t) — Au(s)|*dsdz, Vt > t;.

Using Lemma 4.5, we obtain
F'(t)=L'(t) + cE'(t) < —cE(t) + cHy *(\(t)).

Now, we will use the fact that E/ < 0,H" > 0, H” > 0 on (0,7] to define the
functional

Fi(t) = 5(a0 g((é)))F(t) +cE(t), a0 < r,c¢> 0.
Where F(t) ~ E(t) and
o E() e E() E()Y .
Fl(t):O‘OE(O)H § (o EO))F )+ Hy o E(O)>+ cE'(®)
E(t)

< —cE(t ( O)F ) + HO( )H‘l(/\(t))+cE’(t).

E(0)
Let H given in (H3) and using Young’s inequality in (Hz) with A=H’ (a0%>,
B = Hy '(\(t)) to get

Fi(t) < ~cB(t) ) (o OE(((?)) 115 (#5002 f))) ) +e(A0) + (1)
< —cE(t)Hé( OE(((t)))) + ca E(((];)) (ozoE(é)) dE'(t) + cE'(t).
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Choosing aq, ¢, c’, such that for all ¢ > ¢; we have
E(t) E(t) E(t)
F{(t) < -k H’( ):—kH ,
0= g o)) = TR
where S2(t) = H{(apt). By using the strict convexity of Hy on (0,7], to find
that HJ}, Hy are strict positives function on (0, 1], then

(4:30) R(t) = 7’“;}0(? ~ E(t), 7 € (0,1),

and
R'(t) < —vkoHa(R(t)), ko € (0,+00), t > t;.
hence, a simple integration gives

R(t) < H{ ' (nit +no), ni,ng € (0, +00), t > ty,

here Hy(t) = j;l H=1(s)ds.
From (4.30), for a positive constant ns, we have

E(t) < nngl(n1t+n2), ny,ng € (0,+00), t>t.

The fact that H; is strictly decreasing function on (0, 1] and due to properties
of Sy, we have
lim Hy(t) = +o0.

t—0

Then
E(t¥) < ngH;'(nit +ny), n1,ng € (0,400), t>0. O

Remark 4.7. Noting that, we have obtained all results without any conditions
on the exponent k in the logarithmic nonlinearities.
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