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Novel Results for Global Exponential Stability of Uncertain Systems 

with Interval Time-varying Delay 
 

 

YajuanLiu*, Sang-Moon Lee
†
, Oh-Min Kwon** and Ju H. Park*** 

 

Abstract – This paper presents new results on delay-dependent global exponential stability for 

uncertain linear systems with interval time-varying delay. Based on Lyapunov-Krasovskii functional 

approach, some novel delay-dependent stability criteria are derived in terms of linear matrix 

inequalities (LMIs) involving the minimum and maximum delay bounds. By using delay-partitioning 

method and the lower bound lemma, less conservative results are obtained with fewer decision 

variables than the existing ones. Numerical examples are given to illustrate the usefulness and 

effectiveness of the proposed method. 
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1. Introduction 
 

Time delays are frequently encountered in many fields 

such as chemical engineering system, vehicles, biological 

modeling, economy and other fields. Thus the stability 

analysis of linear time delay systems has been received 

considerable attention during the last decades. Also, it is 

well known that the existence of time delay can lead 

oscillation, instability or divergence in system performance 

[1-2]. Thus, the stability analysis and synthesis of systems 

with time delay have been one of the hottest topic in con-

trol society. For recent trends of the topic, see [3-19] and 

references therein. 

More recently, the stability analysis of linear systems 

with interval time-varying delay, which the lower bound is 

not restricted to be zero, has been extensively studied by 

many researchers [3-11, 18, 19]. A real example of such 

systems is networked control systems [13]. In general, the 

stability analysis of time-delay systems can be classified 

into two categories: delay-dependent [6-8] and delay-

independent approach [12, 14]. It is well known that delay-

dependent criteria are less conservative than the delay-

independent ones when the size of time-delay is small. 

Hence, more attentions have been paid to the study for 

checking the conservatism of delay-dependent conditions. 

In the field of delay-dependent stability analysis, an 

important issue is to enlarge the feasibility region of 

stability criteria or to obtain a maximum allowable upper 

bound of time delays as large as possible. In this regard, 

Shao [7] provided a new delay-dependent stability criterion 

for linear systems with interval time-varying delay by 

utilizing the convex combination method. In [9], less 

conservative results were derived with much fewer 

decision variables by introducing the lower bound lemma. 

Liu [11] constructed a new Lyapunov functional which 

makes the results less conservative than the results of [7, 9]. 

It should be noted that these results only focused their 

effort on asymptotic stability. 

In practice, some uncertainties in the systems are 

unavoidable because it is very difficult to obtain an exact 

mathematical model due to the environmental noise, uncer-

tain or slowly varying parameters. Thus, it is natural to 

consider the parameter uncertainties in a mathematical 

model. In addition, fast convergence of a system is 

essential for real-time computation, and the exponential 

convergence rate is generally used to determine the speed 

of computations. Therefore, the exponential stability 

analysis for systems with time delays has received deep 

concern in very recent years [14-19]. However, to the best 

of authors’ knowledge, there are few results about the 

exponential stability of uncertain linear system with 

interval time varying delays [18, 19]. In [18], some delay-

dependent sufficient conditions for the exponential 

stabilization of the systems are established in terms of 

LMIs by the construction of improved Lyapunov-

Krasovskii functional combined with Leibniz Newton’s 

formula. In [19], the authors dealt with the same problem 

using two novel integral equalities. But, these results have 

two drawbacks. One is that the results cannot be applied 

when the time delay is differentiable [18, 19], the other is 

that it involves many matrix variables [19], which increase 

computation burden. 

With this motivation, we revisit the problem of 

exponential stability of uncertain linear systems with 

interval time-varying delay. By constructing a new 
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Lyapunov-Krasovskii functional, novel delay-dependent 

stability criteria with an exponential convergence rate are 

derived. Our results can be applied when the delay is 

differentiable. Less conservative results are obtained with 

fewer matrix variables than [19] by using delay-

partitioning technique and the lower bound lemma. Finally, 

three numerical examples are shown to confirm the 

superiority of our results 

Notations: Throughout this paper, I  demotes the iden-

tity matrix with appropriate dimensions, nR  denotes the n 

dimensional Euclidean space, and m nR ×  is the set of all 

m× n real matrices, ⋅  refers to the Euclidean vector 

norm and the induced matrix norm. For symmetric 

matrices A  and B , the notation A B> (respectively, 

A B≥ ) means that the matrix A B− is positive definite 

(respectively, nonnegative), max ( )λ ⋅  and min ( )λ ⋅ stand for 

the largest and smallest eigenvalue of given square matrix, 

respectively. { }diag ⋯  denotes the block diagonal matrix. 

{ }0sup ( ) , ( )
Mh s x t s x t sφ − ≤ ≤= + +ɺ , where 0Mh >  

is some constant.  

 

 

2. Problem Statement 

 

Construction the following uncertain linear systems with 

time varying delay: 

 

 1 1( ) ( ( )) ( ) ( ( )) )(( ( ))= + ∆ + + ∆ −ɺ
Tx t A A t x t A A t x t h t  (1) 

 [ ]( ) ( ), ,0Mx t t t hϕ= ∈ − , 

 

where ( ) nx t R∈ is the state, A  and 1A  are known real 

constant matrices with appropriate dimensions; ( )tϕ  is 

the initial condition of the system. The time varying delay 
( )h t  is differentiable function satisfying 

 

 0 ( )m Mh h t h≤ ≤ ≤ , (2) 

 ( )h t µ≤ɺ , (3) 

 

where the bounds , ,m Mh h µ  are known positive scalars. 

The uncertainties satisfy the following conditions: 

 

 [ ] [ ]1 1( ) ( ) ( )A t A t DF t E E∆ ∆ = ,  (4) 

 

where 1, ,D E E  are known constant matrices, 

( ) n nF t R ×∈  is the unknown real time varying matrices 

with Lebesgue measurable elements bounded by  

 

 ( ) ( ) , 0TF t F t I t≤ ∀ ≥ . (5) 

 

Therefore, system (1) with uncertainties satisfying (4) 

and (5) can be written in the following form:  

 

1

1

( ) ( ) ( ( )) ( ),

( ) ( ) ( ),

( ) ( ) ( ( )).

x t Ax t A x t h t Dp t

p t F t q t

q t Ex t E x t h t

= + − +

=

= + −

ɺ

 (6) 

 

We need the following definition and Lemmas for der-

iving the main results. 
 
Definition 2.1 [16] For a given positive scalar k , the 

zero solution of (6) is exponentially stable if there exist a 

positive scalar γ  such that every solution ( )x t  of (6) 

satisfies the following condition 
 

 ( ) ktx t eγ ϕ−≤ . 

 
Lemma 2.1 [7] For any constant positive definite matrix 

nM R∈ and sβ α≤ ≤ , the following inequalities hold 
 

 

( ) ( )

( ) ( ) ( )

( ) ( ) .

T

T

x s Mx s ds

x x M x x

α

β
α β

α β α β

− − ≤

   − − −   

∫ ɺ ɺ

 

 
Lemma 2.2 [9] (Lower bounds lemma) Let 1 2, , ,f f ⋯  
:Nf

mR R→  have positive values in an open subset 

D of mR . Then, the reciprocally convex combination of 

if  over D  satisfies 
 

{ } { },

,
0, 1

1
min ( ) ( ) max ( )

i ji i ii

i i i i j
gii i i j

f t f t g t
α α α α> = ≠

= +
∑

∑ ∑ ∑  

 

Subject to 

 

,

, , ,
,

( ) ( )
: , ( ) , 0 .

( ) ( )

i i jm
i j i j j i

i j j

f t g t
g R R g t g

g t f t=

   
→ ∆ >  

    
 

 

 

3. Main Results 

 

In this section, new stability criteria for system (1) will 

be derived by use of Lyapunov method and LMI 

framework 

 

3.1 Exponential stability for nominal systems with 

interval time-varying delay 
 
First, we present a delay dependent exponential stability 

condition for the following nominal interval time-varying 

delay systems with 1( ) 0, ( ) 0A t A t∆ = ∆ = . 

 

 1( ) ( ) ( ( ))x t Ax t A x t h t= + −ɺ  (7) 

 [ ]( ) ( ), , 0Mx t t t hϕ= ∈ − . 

 

By introducing augmented Lyapunov-Krasovskii func-
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tional, a less conservative delay-dependent stability crite-

rion for system (7) will be proposed. In convenience, let us 

define 

 

 1 2,
2 2

m M mh h h
h h

+
= = , 

 

1 2

( ) ( ), ( ( )), ( ),

( ), ( ), ( ) .

= − −

− − − 

T T T T
m

T T T
M

t x t x t h t x t h

x t h x t h x t h

ξ
 

 

The corresponding block entry matrices are defined as 
6 ( 1, 2, , 6)n n

ie R i×∈ = ⋯ e.g., [ ]4 0 0 0 0 0
TT

e I=  

6n nR ×∈ . Defining ( )7 1 1 2

T
T Te Ae A e= + , then (7) can be 

written as 7( ) ( )Tx t e tξ=ɺ . 

Denote 

 

2

M mh h
δ

−
= , 

1 1 1 1 7 7 12 ,T T Tke Pe e Pe e PeΣ = + +  

2 2
2 3 3 2 2(1 ) ,m Mkh khT Te e Re e e Reµ− −Σ = − −  

22
3 7 7 1 3 1 3

2
7 7

2
3 2 2 4 3 2 2 4

( )

[ ] [ ] ,

m

M

TkhT
m

T
M m

kh T

T

h e Ue e e e U e e

h h e Ue

U T
e e e e e e e e e

T U

−

−

Σ = − − −      

+ −

 
− − − − − 

  
2

4 1 1 3 3

2
7 7 4 4

( )

( ) ,

M

M

khT T
M m

khT T
M m

h h e Se e e Ne

h h e Se e e Ne

−

−

Σ = − +

+ − −
 

1

2

2
5 1 5 1 1 5 5 3 1 5 3

2
3 6 1 3 6 6 4 1 6 4

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] ,

khT T

khT T

e e e e e e e e e

e e e e e e e e e

−

−

Σ = −

+ −

Q Q

Q Q
 

1

2

22
6 1 7 1 7 1 5 1 1 5

22
2 7 2 7 6 4 2 6 4

2
2 7 2 7

2 12
3 2 2 6 3 2 2 6

1 2

( )

( )

[ ] [ ] ,

M

TkhT

TkhT
M

T
m

kh T

T

h e Z e e e e Z e e

h h e Z e e e e Z e e

h h e Z e

Z T
e e e e e e e e e

T Z

−

−

−

Σ = − − −      

+ − − − −      

+ −

 
− − − − − 

  

 

1

2

22
7 1 7 1 7 1 5 1 1 5

22
2 7 2 7 3 6 2 3 6

2
2 7 2 7

2 12
6 2 2 4 6 2 2 4

1 2

( )

( )

[ ] [ ] ,M

TkhT

TkhT
m

T
M

kh T

T

h e Z e e e e Z e e

h h e Z e e e e Z e e

h h e Z e

Z T
e e e e e e e e e

T Z

−

−

−

Σ = − − −      

+ − − − −      

+ −

 
− − − − − 

  

 

1 1 2 3 4 5 6 ,ϒ = Σ +Σ +Σ + Σ + Σ +Σ  

2 1 2 3 4 5 7 .ϒ = Σ + Σ + Σ +Σ +Σ +Σ  

 

Theorem  3.1  For given scalars ,mh  ( ),M M mh h h>  

, 0kµ ≥ , system (7) is globally exponentially stable if 

there exist symmetric positive definite matrices 
2 2

1 ,n n×∈Q R
2 2

2 ,n n×∈Q R n n×  dimensional positive 

symmetric matrices 1 2, , , , ,P R U S Z Z , and appropriate 

dimension matrices 1, ,T T N  satisfying the following 

LMIs: 

 

 1 20, 0,ϒ < ϒ <  (8) 

 
2 1

1 2

0, 0, 0.
TT T

Z TU T S N

T ZT U N S

    
≥ ≥ ≥    

        
 (9) 

 

Proof. Consider the following Lyapunov-Krasoskii func-

tional  

  

6

1

( ) i

i

V t V

=

=∑  (10) 

where 

 
2

1 ( ) ( ),kt TV e x t Px t=  

2
2

( )
( ) ( ) ,

mt h
ks T

t h t
V e x s Rx s ds

−

−
= ∫  

0
2

3

2

( ) ( )

( ) ( ) ( ) ,

m

m

M

t
ks T

m
h t

h t
ks T

M m
h t

V h e x s Ux s dsd

h h e x s Ux s dsd

α

α

α

α

− +

−

− +

=

+ −

∫ ∫

∫ ∫

ɺ ɺ

ɺ ɺ

 

2
4 ( ( ) ( ) ( ) ( )) ,

m

M

h t
ks T T

h t
V e x s Sx s x s Sx s dsd

α
α

−

− +
= +∫ ∫ ɺ ɺ  

1

2

2
5 1

1 1

2
2

( ) ( )

( ) ( )

( ) ( )
,

( ) ( )

m

T
t

ks

t h

T
t h

ks

t h

x s x s
V e ds

x s h x s h

x s x s
e ds

x s x tδ δ

−

−

−

   
=    − −   

   
+    − −   

∫

∫

Q

Q

 

1

2

2

0
2

6 1 1

2
2 2

2
2 2

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ,

M

m

t
ks T

h t

h t
ks T

M
h t

h t
ks T

m
h t

V h e x s Z x s dsd

h h e x s Z x s dsd

h h e x s Z x s dsd

α

α

α

α

α

α

− +

−

− +

−

− +

=

+ −

+ −

∫ ∫

∫ ∫

∫ ∫

ɺ ɺ

ɺ ɺ

ɺ ɺ

 

 

Calculating the time-derivative of ( )V t , we have 

 
2 2

1 2 ( ) ( ) 2 ( ) ( )kt T kt TV ke x t Px t e x t Px t= +ɺ ɺ  

2
1( ) ( ),kt Te t tξ ξ= Σ   (11) 

{
}

{
}

22
2

2 ( )

22

2

( ) ( )

(1 ( )) ( ( )) ( ( ))

( ) ( )

(1 ) ( ( )) ( ( ))

m

m

M

khkt T
m m

kh t T

khkt T
m m

kh T

V e e x t h Rx t h

h t e x t h t Rx t h t

e e x t h Rx t h

e x t h t Rx t h tµ

−

−

−

−

= − −

− − − −

≤ − −

− − − −

ɺ

ɺ
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2
2( ) ( ),kt Te t tξ ξ= Σ   (12) 

 

2 2 2
3

2 2

2

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

m

m

M

t
kt T ks T

m m
t h

kt T
M m

t h
ks T

M m
t h

V e h x t Ux t h e x s Ux s ds

e h h x t Ux t

h h e x s Ux s ds

−

−

−

= −

+ −

− −

∫

∫

ɺ ɺ ɺ ɺ ɺ

ɺ ɺ

ɺ ɺ

 

22 2

2

( ) ( ) ( ) ( )

( ) ( ) ( )

m

m

t
khkt T T

m m
t h

T
M m

e h x t Ux t h e x s Ux s ds

h h x t Ux t

−

−


≤ −



+ −

∫ɺ ɺ ɺ ɺ

ɺ ɺ

 

2 2
( ) ( ) ( ) ,

m
M

M

t h
kh ks T

M m
t h

h h e e x s Ux s ds
−

−

−


− − 

∫ ɺ ɺ   (13) 

 
Here, using Lemma 2.1, it can be obtained that 
 

 
( ) ( )

[ ( ) ( )] [ ( ) ( )],

m

t
T

m
t h

T
m m

h x s Ux s ds

x t x t h U x t x t h

−
−

≤ − − − − −

∫ ɺ ɺ

  (14) 

 

Also, the following inequality is obtained from Lemma 

2.2,  

 

( )

( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )
( )

( )
( )

m

M

M

m

m m

M

t h
T

M m
t h

t h t
T

M m
t h

t h
T

M m
t h t

T
t h t h

M m

t h t t h t
m

t
M m

t h
M

h h x s Ux s ds

h h x s Ux s ds

h h x s Ux s ds

h h
x s ds U x s ds

h t h

h h
x s ds

h h t

−

−

−

−

−

−

− −

− −

−

−

− −

= − −

− −

 −    
≤ −    −     

 −
−  

− 

∫

∫

∫

∫ ∫

ɺ ɺ

ɺ ɺ

ɺ ɺ

ɺ ɺ

ɺ

( ) ( )

( )

( ) ( ( ))

( ( )) ( )

m

T
h t t h t

t h

T

m

T
M

U x s ds

U Tx t h x t h t

x t h t x t h T U

−

−

  
   
   

 − − − 
≤ −   − − −     

∫ ∫ ɺ

( ) ( ( ))
.

( ( )) ( )

m

M

x t h x t h t

x t h t x t h

− − − 
 − − − 

 (15) 

 

It should be noted that when ( ) mh t h=  or ( ) Mh t h= , 

we have 
( )

( ) 0
mt h

t h t
x s ds

−

−
=∫ ɺ  or 

( )

( ) 0
M

t h t

t h
x s ds

−

−
=∫ ɺ , 

respectively. So the relation (15) still holds. 

Form (13)-(15), we obtain 

 

   2
3 3( ) ( ),kt TV e t tξ ξ≤ Σɺ  

{2 2 2
4 ( ) ( ) ( ) ( ) ( ) ( )kt T T

M m M mV e h h x t Sx t h h x t Sx t≤ − + −ɺ ɺ ɺ  

2 2
( ) ( ) ( )

m
M

M

t h
kh ks T

M m
t h

h h e e x s Sx s ds
−

−

−
− − ∫  

2 2
( ) ( ) ( ) ,

m
M

M

t h
kh ks T

M m
t h

h h e e x s Sx s ds
−

−

−


− − 

∫ ɺ ɺ   

 
Inspired by the work of [3], the following two zero 

inequalities hold for any appropriate dimension matrix N , 

 
2 ( )

( )

( ) ( ) ( ( )) ( ( ))

2 ( ) ( ) 0,

M

m

k t h T T
m m

t h
T

t h t

e x t h Nx t h x t h t Nx t h t

x s Nx s ds

−

−

−

 − − − − −


− =∫ ɺ

2 ( )

( )

( ( )) ( ( )) ( ) ( )

2 ( ) ( ) 0,

M

M

k t h T T
M M

t h t
T

t h

e x t h t Nx t h t x t h Nx t h

x s Nx s ds

−

−

−

 − − − − −


− =∫ ɺ

  

 
From the above zero equalities, one can obtain 

 

{2
4 4

2

( )

( ) ( )

( ) ( )

( ) ( )

m
M

kt T

T
t h

kh

Tt h t

V e t t

S Nx s x s
e ds

x s x sN S

ξ ξ

−
−

−

≤ Σ

    
−     

     
∫

ɺ

ɺ ɺ

 

( )
2 ( ) ( )

,
( ) ( )

M

M

T
t h t

kh

Tt h

S Nx s x s
e ds

x s x sN S

−
−

−

     
−      

       
∫ ɺ ɺ

   (16) 

1

2

2
5 1

1 1

1 12
1

2
2 2

2 22
2

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

T

kt

T

kh

m m

T

m m

T

kh

M M

x t x t
V e

x t h x t h

x t h x t h
e

x t h x t h

x t h x t h

x t h x t h

x t h x t h
e

x t h x t h

−

−

   
≤    − −   

− −   
−    − −   

− −   
+    − −   

− −   
−    − −   

ɺ Q

Q

Q

Q

 

2
5( ) ( ),kt Te t tξ ξ= Σ   (17) 

1

1

2

22 2
6 1 1 1 1

2
2 2

2 2
2 2

2
2 2

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

M

M

t
khkt T T

t h

T
M

t h
kh ks T

M
t h

T
m

V e h x t Z x t h e x s Z x s ds

h h x t Z x t

h h e e x s Z x s ds

h h x t Z x t

−

−

−
−

−


≤ −



+ −

− −

+ −

∫

∫

ɺ ɺ ɺ ɺ ɺ

ɺ ɺ

ɺ ɺ

ɺ ɺ

 

2

2

2 2
2 2( ) ( ) ( ) .

mt h
kh ks T

m
t h

h h e e x s Z x s ds
−

−

−


− − 

∫ ɺ ɺ   (18) 

 
Here, using Lemma 2.1, we have 
 

 1

1 1

1 1 1

( ) ( )

[ ( ) ( )] [ ( ) ( )],

t
T

t h

T

h x s Z x s ds

x t x t h Z x t x t h

−
−

≤ − − − − −

∫ ɺ ɺ

 (19) 
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In the following discussions, the upper bound of 6Vɺ  is 

derived by considering two different cases for (i) 

2( )mh h t h≤ ≤  and (ii) 2 ( ) Mh h t h≤ ≤ . 

When 2( )mh h t h≤ ≤ , the following inequality is 

satisfied by Lemma 2.1  

 

 

2

2 2

2 2 2

( ) ( ) ( )

[ ( ) ( )] [ ( ) ( )],

M

t h
T

M
t h

T
M M

h h x s Z x s ds

x t h x t h Z x t h x t h

−

−
− −

≤ − − − − − − −

∫ ɺ ɺ

 (20) 

 

By using the similar methods in (15), we obtain 

 

 
2

2 2

2 1

2 1 2

( ) ( ) ( )

( ) ( ( ))

( ( )) ( )

mt h
T

m
t h

T

m

T

h h x s Z x s ds

Z Tx t h x t h t

x t h t x t h T Z

−

−
− −

 − − − 
≤ −   − − −     

∫ ɺ ɺ

 

 
2

( ) ( ( ))

( ( )) ( )

mx t h x t h t

x t h t x t h

− − − 
 − − − 

 (21) 

 

From (18)-(21), in this cases  

 

 2
6 6( ) ( ),kt TV e t tξ ξ≤ Σɺ  (22) 

 

If (9) hold, the following inequality is satisfied with 

(11)-(22) by S-procedure [1],  

 

 2
1( ) ( ) ( ).kt TV t e t tξ ξ≤ ϒɺ  (23) 

 

When 2 ( ) Mh h t h≤ ≤ , the following inequality is 

satisfied by Lemma 2.1  

 

 2

2 2

2 2 2

( ) ( ) ( )

[ ( ) ( )] [ ( ) ( )],

mt h
T

m
t h

T
m m

h h x s Z x s ds

x t h x t h Z x t h x t h

−

−
− −

≤ − − − − − − −

∫ ɺ ɺ

  (24) 

 

By using the similar methods in (15), we obtain 

 

 

2

2 2

2 12

1 2

( ) ( ) ( )

( ) ( ( ))

( ( )) ( )

M

t h
T

M
t h

T

T
M

h h x s Z x s ds

Z Tx t h x t h t

x t h t x t h T Z

−

−
− −

 − − − 
≤ −   − − −     

∫ ɺ ɺ

 

 
2( ) ( ( ))

.
( ( )) ( )M

x t h x t h t

x t h t x t h

− − − 
 − − − 

 (25) 

 

From (18)-(21), in this cases  

 2
6 7( ) ( ),kt TV e t tξ ξ≤ Σɺ  (26) 

 

If (9) hold, the following inequality is satisfied with 

(11)-(19) and (26) by using S-procedure [1],  

 2
2( ) ( ) ( ).kt TV t e t tξ ξ≤ ϒɺ  (27) 

 

Now we can conclude that if condition (8) and (9) are 

satisfied, then ( ( )) 0.V x t ≤ɺ  Thus, ( ( )) ( (0)).V x t V x≤  

Furthermore, from the definition of ( ( ))V x t  and (10), we 

can derive the following inequalities:  

 

 
2

( (0)) ,V x a φ≤  

 

where 

 

max max

3 2 2

max

2 2
max 1 max 1

3

2 max 2 max 1

2 22 2
2 22 2

max 2

( ) ( ) ( )

( )( )
( )

2 2

( ) ( ) 2 ( )

2 ( ) ( )
2

( )( )( )( )
( ).

2 2

M m

m M m M m

M m

m

m mM M

a P h h R

h h h h h
U

h h S h

h
h Z

h h h hh h h h
Z

λ λ

λ

λ λ

λ λ

λ

= + −

 − −
+ +  
 

+ − +

+ + +

 − −− −
+  

 

Q

Q

 

 

On the other hand, we have 

 

 
22

min( ( )) ( ) ( ) .
kt

V x t e P x tλ≥  

 

Hence,  

 

 
2

min

( ) .
( )

kta
x t e

P
φ

λ
−≤  

 

Then, the proof is completed by the Lyapunov stability 

theorem. 

 

Remark 3.1 When 0 ( )m Mh h t h≤ ≤ ≤ , the most 

attractive contribution is that we have made the best use of 

the lower bound (network induced delay) of the interval 

time-varying delay. In fact, in order to derive the less 

conservative stability criterion, we employ a new 

Lyapunov-Krasovskii functional (10), which is mainly 

based on the information about 1 2, .
2 2

m m Mh h h
h h

+
= =  

Remark 3.2 When µ  is known, Theorem 3.1 can be 

applied while [8, 16, 17] fails to work. If µ  is unknown 

or ( )h t is not differentiable, then the following result can 

be obtained from Theorem 3.1 by setting 0R = , which will 

be introduced as Corollary 3.1. 

Corollary 3.1 For given scalars ,mh  ( ),M M mh h h>  

0k ≥ , system (7) is globally exponentially stable if there 

exist symmetric positive definite matrices 2 2
1 ,n n×∈Q R  

2 2
2 ,n n×∈Q R n n×  dimensional positive symmetric 

matrices 1 2, , , ,P U S Z Z , and appropriate dimension 



YajuanLiu, Sang-Moon Lee, Oh-Min Kwon and Ju H. Park 

 1547 

matrices 1, ,T T N  satisfying the following LMIs: 
 

 1 20, 0,ϒ < ϒ <ɶ ɶ  (28) 

 
2 1

1 2

0, 0, 0,
TT T

Z TU T S N

T ZT U N S

    
≥ ≥ ≥    

        
 (29) 

 
where  

 

 1 1 3 4 5 6 ,ϒ = Σ + Σ + Σ + Σ + Σɶ  

 2 1 3 4 5 7 .ϒ = Σ +Σ + Σ + Σ + Σɶ  

 

3.2 Robust exponential stability for uncertain systems 

with interval time varying delay 
 
Based on the result of Theorem 3.1, the following 

theorem provides a robust exponential stability condition 

of uncertain linear systems with interval time-varying 

delay (6). 

For simplicity in Theorem 3.2, 7 ( 1, 2, ,7)n n
ie R i×∈ = ⋯  

are defined as block matrices. (for example, 4
Te =   

[ ] 7
0 0 0 0 0 0

T n n
I R

×∈ ). The other notations for some 

vectors and matrices are defined as: 
 

1 2

( ) ( ), ( ( )), ( ),

( ), ( ), ( ), ( )

T T T T
m

T T T T
M

t x t x t h t x t h

x t h x t h x t h p t

ξ = − −

− − − 

 

[ ]1= 0 0 0 0 0 ,E EE�  

[ ]1= 0 0 0 0 ,A A DA�  

7 7 ,Φ = −T Te eε εE E�  

1 1 1 1 12 ,T T Tke Pe e P PeΣ = + +A A  

2 2
2 3 3 2 2(1 ) ,m Mkh khT Te e Re e e Reµ− −Σ = − −  

22
3 1 3 1 3

2

2
3 2 2 4 3 2 2 4

( )

[ ] [ ] ,

m

M

TkhT
m

T
M m

kh T

T

h U e e e U e e

h h U

U T
e e e e e e e e e

T U

−

−

Σ = − − −      

+ −

 
− − − − − 

  

A A

A A

2
4 1 1 3 3

2
4 4

( )

( ) ,

M

M

khT T
M m

khT T
M m

h h e Se e e Ne

h h S e e Ne

−

−

Σ = − +

+ − −A A
 

1

1

2
5 1 5 1 1 5 5 3 1 5 3

2
3 6 1 3 6 6 4 1 6 4

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] ,

khT T

khT T

e e e e e e e e e

e e e e e e e e e

−

−

Σ = −

+ −

Q Q

Q Q
 

122
6 1 1 1 5 1 1 5

TkhT
h Z e e e Z e e

−Σ = − − −      A A  

22
2 2 6 4 2 6 4

2
2 2

( )

( )

M
TkhT

M

T
m

h h Z e e e Z e e

h h Z

−+ − − − −      

+ −

A A

A A
 

2
2 12

3 2 2 6 3 2 2 6

1 2

[ ] [ ] ,
kh T

T

Z T
e e e e e e e e e

T Z

−  
− − − − − 

  
 

1

2

22
7 1 1 1 5 1 1 5

22
2 2 3 6 2 3 6

2
2 2

2 12
6 2 2 4 6 2 2 4

1 2

( )

( )

[ ] [ ] ,M

TkhT

TkhT
m

T
M

kh T

T

h Z e e e Z e e

h h Z e e e Z e e

h h Z

Z T
e e e e e e e e e

T Z

−

−

−

Σ = − − −      

+ − − − −      

+ −

 
− − − − − 

  

A A

A A

A A  

1 1 2 3 4 5 6 ,ϒ = Σ +Σ +Σ + Σ +Σ + Σ +Φ  

2 1 2 3 4 5 7 .ϒ = Σ + Σ +Σ + Σ + Σ +Σ +Φ  

 

Theorem 3.2 For given scalars ,mh  ( ),M M mh h h>  
, 0kµ ≥ , system (6) is globally exponentially stable if 

there exist symmetric positive definite matrices 
2 2

1 ,n n×∈Q R  2 2
2 ,n n×∈Q R n n×  dimensional positive 

symmetric matrices 1 2, , , , ,P R U S Z Z , and appropriate 

dimension matrices 1, ,T T N  satisfying the following 

LMIs: 

 

 1 20, 0,ϒ < ϒ <   (30) 

 
2 1

1 2

0, 0, 0.
TT T

Z TU T S N

T ZT U N S

    
≥ ≥ ≥    

        
  (31) 

 

Proof. By considering the same Lyapunov-Krasovskii 

functional in Theorem 3.1, the upper bounds of 

( )ɺV t  are obtained as  

 

5
2

6 2

1

5
2

7 2

1

( ) ( ) ( ) , ( ) ,

( ) ( ) ( ) , ( ) .

=

=

     ≤ Σ +Σ ≤ ≤        


    
≤ Σ +Σ ≤ ≤        

∑

∑

ɺ

ɺ

kt T
i m

i

kt T
i m

i

V t e t t when h h t h

V t e t t when h h t h

ξ ξ

ξ ξ

 

 

On the other hand, the following inequality holds From 

(4)-(6) 

 

 2 ( ) ( ) ( ) ( ).kt T Te p t p t q t q t≤  (32) 

 
By S-procedure [1], we can derive inequalities (32) with 

a positive scalar ε  such that 

 

 
{ }2

2

( ) ( ) ( ) ( )

( ) ( ) 0.

kt T T

kt T

e p t p t q t q t

e t t

ε

ξ ξ

 ≤ 

= Φ ≥
   (33) 

 
Therefore, the uncertain system (6) is exponentially sta-

ble, if LMIs (30-31) hold. This completes our proof. 

The following result is obtained from Theorem 3.2 when 
µ  is unknown or ( )h t  is not differentiable. 
 
Corollary 3.2 For given scalars ,mh  ( ),M M mh h h>  

0k ≥ , system (7) is globally exponentially stable if there 
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exist symmetric positive definite matrices 2 2
1 ,n n×∈Q R  

2 2
2 ,n n×∈Q R n n×  dimensional positive symmetric 

matrices 1 2, , , ,P U S Z Z , and appropriate dimension 

matrices 1, ,T T N  satisfying the following LMIs: 

 

 1 2
ˆ ˆ0, 0,ϒ < ϒ <  (34) 

 
2 1

1 2

0, 0, 0,
TT T

Z TU T S N

T ZT U N S

    
≥ ≥ ≥    

        
 (35) 

 

where  

 

 1 1 3 4 5 6
ˆ ,ϒ = Σ +Σ +Σ + Σ +Σ +Φ  

 2 1 3 4 5 7
ˆ ,ϒ = Σ +Σ + Σ + Σ +Σ +Φ  

 

Remark 3.3 For system (7) with the routine delay case 

described by 0 ( ) ( ( ) ),Mh t h h t µ≤ ≤ ≤ɺ  the corresponding 

Lyapunov-Krasovskii reduces to 

 

2 2

( )

0
2

( ) ( )+ ( ) ( )

h ( ) ( )
M

t
kt T ks T

t h t

t
ks T

M
h t

V e x t Px t e x s Rx s ds

e x s Ux s dsd
α

α

−

− +

=

+

∫

∫ ∫ ɺ ɺ

  

0
2

+ ( ( ) ( ) ( ) ( ))
M

t
ks T T

h t
e x s Sx s x s Sx s dsd

α
α

− +
+∫ ∫ ɺ ɺ

2

2
2

2
2 2

( ) ( )

( ) ( )

( ) ( ) ( )
M

T

ks

h t
ks T

M
h t

x s x s
e ds

x s x t

h h e x s Z x s dsd
α

δ δ

α
−

− +

   
+    − −   

+ − ∫ ∫ ɺ ɺ

Q

 

2

0
2

2 2( ) ( ) .
t

ks T

h t
h e x s Z x s dsd

α
α

− +
+ ∫ ∫ ɺ ɺ  

 

Similar to the proof of Theorem 3.1(Corollary 3.1) and 

Theorem 3.2(Corollary 3.2), one can easily derive less con-

servative results than some existing ones. 

 

Remark 3.4 In most of the applications of neural 

networks there is a shared requirement of raising the 

networks convergence speed in order to cut down the time 

of neural computing. Since the exponential convergence 

rate could be used to determine the speed of neural 

computation [20, 21]. On the other hand, from the 

Dynamic simulation systems [22] and Real-time 

computing [23], it can be confirmed that, fast convergence 

of a system is essential for real-time computation, and the 

exponential convergence rate is generally used to 

determine the speed of computations. 

Remark 3.5 By constructing a new augmented 

Lyapunov-Krasosvskii functional and using lower bound 

lemma, exponential stability criteria have been obtained 

which are expected to be less conservative than the results 

discussed in the recent literature [5, 8, 11]. The effectiveness 

of the proposed methods has been shown elaborately 

through the following numerical examples. 

 

 

4. Numerical examples 

 

Example 4.1 Consider the system given in (7) with 

following parameters 

 

 
2 0

0 0.9
A

− 
=  − 

, 1

1 0

1 1
A

− 
=  − − 

. 

 

Case 1: When 0.5, 1m Mh h= = . Table 1 gives the allow-

able of the maximum exponential convergence rate k for 

different µ . For this case, the exponential stability criteria 

in [8, 11] are not applicable because the criteria are only 

for asymptotic stability.  

Case 2: For various µ  and unknown µ , the allowable 

bound Mh , which guarantee the asymptotic stability of 

system for given lower bounds mh  are provided in Table 

2. It is easy to see that our method gives improved results 

than the existing ones.  

 

Example 4.2 Consider the system given in (6) with 

following parameters 

 

 
0.5 2

1 1
A

− − 
=  − 

, 1

0.5 1

0 0.6
A

− − 
=  
 

, D I= , 

1

0.2 0

0 0.2
E E

 
= =  

 
.  

 

For 0 ( )m Mh h t h< ≤ ≤ , Table 3 presents the allowance 

Table 1. The maximum exponential convergence rate k  

for various µ  

µ  0 0.1 0.3 0.9 Unknown 

Theorem 3.1 0.5190 0.4998 0.4498 0.3331 0.3331 

 

Table 2. The maximum bound Mh  with given mh  for 

different µ  

mh  Methods 0.1µ =  0.3µ =  0.5µ =  0.9µ =  unknown 

1 
[8] 

[11] 

Ours 

4.1935 

4.4045 

4.4052 

3.0538 

3.1208 

3.1655 

2.3058 

3.1208 

3.1655 

2.3058 

2.3513 

2.4594 

2.3058 

2.3513 

2.4594 

2 

 

 

[8] 

[11] 

Ours 

4.4932 

4.5729 

4,6160 

3.0129 

3.1092 

3.1773 

2.5663 

2.6987 

2.7509 

2.5663 

2.6987 

2.7509 

2.5663 

2.6987 

2.7509 

3 

 

 

[8] 

[11] 

Ours 

4.3979 

4.5406 

4,6508 

3.3408 

3.4186 

3.4626 

3.3408 

3.4186 

3.4626 

3.3408 

3.4186 

3.4626 

3.3408 

3.4186 

3.4626 

4 

 

[8] 

[11] 

Ours 

4.1978 

4.2367 

4,5255 

4.1690 

4.2097 

4.2576 

4.1690 

4.2097 

4.2576 

4.1690 

4.2097 

4.2576 

4.1690 

4.2097 

4.2576 

5 

 

 

[8] 

[11] 

Ours 

5.0275 

5.0440 

5.0976 

5.0275 

5.0440 

5.0976 

5.0275 

5.0440 

5.0976 

5.0275 

5.0440 

5.0976 

5.0275 

5.0440 

5.0976 
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of the upper bound when µ  is unknown and the 

convergence 0k = . It is obvious that our results are better 

than [5]. 

 

Example 4.3 Consider the system given in (6) with 

following parameters 

 

0.5 1

1 1
A

 
=  − − 

, 1

1 0.3

0.2 0.5
A

− 
=  − 

, 

0.04 0.001

0.002 0.05
D

− 
=  − 

,  

0.07 0.004

0.005 0.075
E

− 
=  
 

, 

1

0.0045 0.002

0.001 0.04
E

− 
=  
 

.  

 

Given 0.5, 0.5mh µ= = , Table 4 gives the maximum 

allowable value of Mh  for different convergence rate k . 

For this cases, it is noted that the criteria in [5, 8, 11] are 

not applicable for exponential stability. Therefore, our 

work is more general cases than in the existing results 

 

 

5. Conclusion 

 

In this paper, the problem of delay-dependent 

exponential stability of time-delay systems has been 

investigated. We have considered the time-varying delay in 

a range for which the lower bound is not restricted to be 

zero. By introducing a different Lyapunov functional, new 

delay-dependent criteria have been derived in terms of 

LMIs. It is shown via numerical examples that our 

proposed criteria are less conservative than existing ones. 
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