• Title/Summary/Keyword: Generalized topological spaces

Search Result 61, Processing Time 0.028 seconds

ON THE LOWER SEMICONTINUITY OF THE SOLUTION SETS FOR PARAMETRIC GENERALIZED VECTOR MIXED QUASIVARIATIONAL INEQUALITY PROBLEMS

  • HUNG, NGUYEN VAN
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.6
    • /
    • pp.1777-1795
    • /
    • 2015
  • In this paper, we establish sufficient conditions for the solution set of parametric generalized vector mixed quasivariational inequality problem to have the semicontinuities such as the inner-openness, lower semicontinuity and Hausdorff lower semicontinuity. Moreover, a key assumption is introduced by virtue of a parametric gap function by using a nonlinear scalarization function. Then, by using the key assumption, we establish condition ($H_h$(${\gamma}_0$, ${\lambda}_0$, ${\mu}_0$)) is a sufficient and necessary condition for the Hausdorff lower semicontinuity, continuity and Hausdorff continuity of the solution set for this problem in Hausdorff topological vector spaces with the objective space being infinite dimensional. The results presented in this paper are different and extend from some main results in the literature.

GENERALIZED FRÉCHET-URYSOHN SPACES

  • Hong, Woo-Chorl
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.2
    • /
    • pp.261-273
    • /
    • 2007
  • In this paper, we introduce some new properties of a topological space which are respectively generalizations of $Fr\'{e}chet$-Urysohn property. We show that countably AP property is a sufficient condition for a space being countable tightness, sequential, weakly first countable and symmetrizable, to be ACP, $Fr\'{e}chet-Urysohn$, first countable and semimetrizable, respectively. We also prove that countable compactness is a sufficient condition for a countably AP space to be countably $Fr\'{e}chet-Urysohn$. We then show that a countably compact space satisfying one of the properties mentioned here is sequentially compact. And we show that a countably compact and countably AP space is maximal countably compact if and only if it is $Fr\'{e}chet-Urysohn$. We finally obtain a sufficient condition for the ACP closure operator $[{\cdot}]_{ACP}$ to be a Kuratowski topological closure operator and related results.

ELEMENTS OF THE KKM THEORY FOR GENERALIZED CONVEX SPACE

  • Park, Se-Hei
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.1
    • /
    • pp.1-28
    • /
    • 2000
  • In the present paper, we introduce fundamental results in the KKM theory for G-convex spaces which are equivalent to the Brouwer theorem, the Sperner lemma, and the KKM theorem. Those results are all abstract versions of known corresponding ones for convex subsets of topological vector spaces. Some earlier applications of those results are indicated. Finally, We give a new proof of the Himmelberg fixed point theorem and G-convex space versions of the von Neumann type minimax theorem and the Nash equilibrium theorem as typical examples of applications of our theory.

ON ATTRACTORS OF TYPE 1 ITERATED FUNCTION SYSTEMS

  • JOSE MATHEW;SUNIL MATHEW;NICOLAE ADRIAN SECELEAN
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.3
    • /
    • pp.583-605
    • /
    • 2024
  • This paper discusses the properties of attractors of Type 1 IFS which construct self similar fractals on product spaces. General results like continuity theorem and Collage theorem for Type 1 IFS are established. An algebraic equivalent condition for the open set condition is studied to characterize the points outside a feasible open set. Connectedness properties of Type 1 IFS are mainly discussed. Equivalence condition for connectedness, arc wise connectedness and locally connectedness of a Type 1 IFS is established. A relation connecting separation properties and topological properties of Type 1 IFS attractors is studied using a generalized address system in product spaces. A construction of 3D fractal images is proposed as an application of the Type 1 IFS theory.

On The Reflection And Coreflection

  • Park, Bae-Hun
    • The Mathematical Education
    • /
    • v.16 no.2
    • /
    • pp.22-26
    • /
    • 1978
  • It is shown that a map having an extension to an open map between the Alex-androff base compactifications of its domain and range has a unique such extension. J.S. Wasileski has introduced the Alexandroff base compactifications of Hausdorff spaces endowed with Alexandroff bases. We introduce a definition of morphism between such spaces to obtain a category which we denote by ABC. We prove that the Alexandroff base compactification on objects can be extended to a functor on ABC and that the compact objects give an epireflective subcategory of ABC. For each topological space X there exists a completely regular space $\alpha$X and a surjective continuous function $\alpha$$_{x}$ : Xlongrightarrow$\alpha$X such that for each completely regular space Z and g$\in$C (X, Z) there exists a unique g$\in$C($\alpha$X, 2) with g=g$^{\circ}$$\beta$$_{x}$. Such a pair ($\alpha$$_{x}$, $\alpha$X) is called a completely regularization of X. Let TOP be the category of topological spaces and continuous functions and let CREG be the category of completely regular spaces and continuous functions. The functor $\alpha$ : TOPlongrightarrowCREG is a completely regular reflection functor. For each topological space X there exists a compact Hausdorff space $\beta$X and a dense continuous function $\beta$x : Xlongrightarrow$\beta$X such that for each compact Hausdorff space K and g$\in$C (X, K) there exists a uniqueg$\in$C($\beta$X, K) with g=g$^{\circ}$$\beta$$_{x}$. Such a pair ($\beta$$_{x}$, $\beta$X) is called a Stone-Cech compactification of X. Let COMPT$_2$ be the category of compact Hausdorff spaces and continuous functions. The functor $\beta$ : TOPlongrightarrowCOMPT$_2$ is a compact reflection functor. For each topological space X there exists a realcompact space (equation omitted) and a dense continuous function (equation omitted) such that for each realcompact space Z and g$\in$C(X, 2) there exists a unique g$\in$C (equation omitted) with g=g$^{\circ}$(equation omitted). Such a pair (equation omitted) is called a Hewitt's realcompactification of X. Let RCOM be the category of realcompact spaces and continuous functions. The functor (equation omitted) : TOPlongrightarrowRCOM is a realcompact refection functor. In [2], D. Harris established the existence of a category of spaces and maps on which the Wallman compactification is an epirefiective functor. H. L. Bentley and S. A. Naimpally [1] generalized the result of Harris concerning the functorial properties of the Wallman compactification of a T$_1$-space. J. S. Wasileski [5] constructed a new compactification called Alexandroff base compactification. In order to fix our notations and for the sake of convenience. we begin with recalling reflection and Alexandroff base compactification.

  • PDF

GENERALIZED PROPERTIES OF STRONGLY FRÉCHET

  • Cho, Myung-Hyun;Kim, Jun-Hui;Moon, Mi-Ae
    • Honam Mathematical Journal
    • /
    • v.34 no.1
    • /
    • pp.85-92
    • /
    • 2012
  • Our purpose of this paper is to introduce and study some properties related to approximations by points. More precisely, we introduce strongly AP, strongly AFP, strongly ACP, and strongly WAP properties which are stronger than AP, AFP, ACP, and WAP respectively. Also they are weaker than strongly Fr$\acute{e}$chet property. And we study general properties and topological operations on such spaces and give some examples.