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ON ATTRACTORS OF TYPE 1 ITERATED

FUNCTION SYSTEMS†
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Abstract. This paper discusses the properties of attractors of Type 1 IFS

which construct self similar fractals on product spaces. General results like

continuity theorem and Collage theorem for Type 1 IFS are established. An
algebraic equivalent condition for the open set condition is studied to char-

acterize the points outside a feasible open set. Connectedness properties
of Type 1 IFS are mainly discussed. Equivalence condition for connect-

edness, arc wise connectedness and locally connectedness of a Type 1 IFS

is established. A relation connecting separation properties and topological
properties of Type 1 IFS attractors is studied using a generalized address

system in product spaces. A construction of 3D fractal images is proposed

as an application of the Type 1 IFS theory.
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1. Introduction

Studies on abstract spaces and their approaches to model real life situations
are recent research areas today. Even though it is challenging to visualize the
structures of functions, scientists use abstract spaces to provide relations be-
tween various fields which can suggest solutions to unsolved problems in other
related areas. Fractal geometry solves several recent issues in the field of ge-
ometry. They are the most accepted approximation of natural structures. This
theory introduced by Mandelbrot in 1975 deals with irregularities and chaos[19].
This geometry helps to model the natural phenomena and complex structures
in nature. These structures are constructed mathematically using a finite set of
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contraction mappings called iterated function systems. The mathematical con-
struction of fractals using hyperbolic iterated function systems (IFS) is widely
studied. Hutchinson proved the existence and uniqueness of a non empty com-
pact set called attractor for an IFS[17]. Further separation properties of IFS
were studied using open set condition (OSC). Later Lalley proved that an open
set satisfying this separation property is not influenced by the attractor. Strong
open set condition (SOSC) was introduced to resolve this problem. The equiva-
lence of OSC and SOSC to the positive Hausdorff measure of the attractor was
proved by Schief[30].

Several generalizations and detailed studies on iterated function systems were
carried out in the literature. Many authors have contributed in popularising IFS
to construct self similar structures in different forms. Following Hutchinson’s
work, Barnsley, Falconer and Secelean put forward the research on generalized
self similar sets with more resemblance to nature. Falconer generalized Hutchin-
son’s mathematical definition of self similarity to sub and super self similarity
[10, 11]. Secelean introduced countable and generalized countable IFS [31, 32].
He also considered IFS with generalized contractions and IFS on generalized
spaces [34, 33]. Further studies were conducted by Bandt, Schief, Mcclure,
Vallin and more others. Christoph Bandt and Siegfried Graf considered non-
overlapping attractors with discontinuous action of a family of similitudes, to
generalize the separation property open set condition[7]. Extending work by
Levy, Mandelbrot, Dekking, Bedford, and others, Christoph Bandt constructed
just touching fractals from matrices of integers[6]. M. Mcclure and R. W. Vallin
considered the collection of sub-self similar sets and super self similar sets and
showed that they are dense subsets in the collection of subsets of the Euclidean
space[21]. A. Schief obtained an equivalent condition for both strong open set
condition and open set condition of a self similar set[30]. He also investigated
this result in complete metric spaces and shown that the open set condition
no longer implies equality of Hausdorff and similarity dimension of self-similar
sets[29]. The product of two hyperbolic IFSs and their properties were studied by
Duvall and Husch[9]. Balu and Mathew introduced an IFS which constructs self
similar sets in product spaces[4]. Aswathy and Mathew proposed a new form of
product IFS which allows finding corresponding projection IFS which construct
cross-sections of the higher dimensional fractal[2]. There are hyperbolic IFSs
in product spaces that are not constructed as product of two IFSs. A class of
such IFSs, namely Type 1 IFS were proposed by Aswathy and Mathew[2]. This
collection contains the set of product IFSs. Since every IFS in the product space
are not a product IFSs, the study on these generalized IFSs is relevant in higher
dimensional spaces.

The study on these special attractors in the product spaces is the primary
objective of this work. An algebraic equivalence of the separation property open
set condition is to be studied using the address system. Thus a characterisation
of separation properties in product spaces is another objective of the work.
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In this paper, the analytical and topological properties of attractors of Type
1 IFS are studied. The separation property and open set condition are studied
in product spaces and a feasible open set for Type 1 IFS is proposed. An
equivalent condition on connected properties of attractors is also discussed. A
relation between separation properties and topological properties is studied using
the address system in product spaces. An application of imitating 3D fractal
images using Type 1 IFS is proposed in the final section.

2. Preliminaries

Some definitions and results needed for developing the concept of Type 1 IFS
are recalled in this section. Major results on this section are taken from [8]. We
work on the metric space (X, d). H(X) denotes the collection of non empty com-
pact subsets of X. For x ∈ X and A,B,K ∈ H(X), d(x,K) = min{d(x, y); y ∈
K} and d(A,B) = max{d(x,B);x ∈ A}. The Hausdorff metric on H(X) is
the map h : H(X) ×H(X) → R defined by h(A,B) = max{d(A,B), d(B,A)}.
Then the metric satisfies, h(A ∪ B,C ∪ D) ≤ max{h(A,C), h(B,D)} for ev-
ery A,B,C,D ∈ H(X). This metric space is complete with the completeness
of the metric space (X, d). A contraction mapping is a transformation S on
X such that d(S(x), S(y)) ≤ s.d(x, y), for every x, y ∈ X for a constant con-
tractivity factor 0 ≤ s < 1. Contracting similitude is the case where equality
holds. By the Banach contraction theorem, for every contraction map on a
complete metric space, there exist a unique fixed point and all points in the
space are limited to this fixed point in repeated iterations. An hyperbolic it-
erated function system is a complete metric space (X, d) and a finite number
of contraction mappings fi : X → X, for i = 1, 2, · · · , n. We denote IFS for
hyperbolic IFS throughout this paper. Corresponding to an IFS the trans-

formation W on H(X) defined by W (B) =
n
∪
i=1

(fi(B)) for all B ∈ H(X), is

a contraction mapping on the complete metric space (H(X), h). The unique

fixed point, K ∈ H(X) is given by K = lim
n→∞

W (n)(B) for any B ∈ H(X)

[8]. The fixed point K ∈ H(X) described is the attractor of the IFS. Associ-
ated with an IFS, the code space (Σ, dc) is defined as the space of m symbols
{1, 2, 3, · · · ,m}, say Σ = {σ1σ2σ3 · · · ;σi ∈ {1, 2, 3, · · · ,m} for all i} with the

metric dc(σ, ω) =

m∑
i=1

|ωi − σi|
m+ 1

, for all σ, ω ∈ Σ. The map ϕ from Σ × N × X

defined by ϕ(σ, n, x) = Sσn
◦ Sσn−1

◦ Sσn−2
◦ · · · ◦ Sσ1

(x) has a limiting value
in the attractor independent of x as n → ∞. This continuous and onto func-
tion ϕ : Σ → K defines the addressing of points in the attractor. For any
point in the attractor, an address is defined as any element from the collection
ϕ−1(a) = {σ ∈ Σ;ϕ(σ) = a}. The separation properties of IFS give an idea of
how the self similar copies of the attractor are topologically arranged. Hyper-
bolic IFSs are classified as totally disconnected, just touching and overlapping
based on the separation properties defined using the addressing of points in the
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attractor. If every point in the attractor has a unique address, the IFS is totally
disconnected. Hyperbolic IFSs which are not totally disconnected but satisfy
the OSC, are called just touching. A collection of contractive maps f ′is is said to

satisfy the OSC if there exists a non empty open set V such that
m
∪
i=1
fi(V ) ⊆ V

and fi(V ) ∩ fj(V ) = ϕ for i ̸= j. Study on OSC was initiated by Moran in 1946
which shows the overlap of the copies Ai. The open set V is called the feasible
open set of the contractions or of the attractor.

Topological properties of attractors of IFS were studied in the literature [27,
24]. An attractor, K of an IFS, is said to be connected if there does not exist two
disjoint closed subsets K1 and K2 of K such that K = K1 ∪K2. An attractor
which is not connected is called a disconnected attractor. If the only non empty
connected subsets of K are singletons, then the attractor is totally disconnected.
The attractor is arc wise connected, if for every x, y ∈ K there exist a continuous
function ϕ : [0, 1] → K such that ϕ(0) = x and ϕ(1) = y. The attractor is locally
connected at a point x ∈ K, if for every neighborhood N of x, there exists
a connected neighborhood M of x such that M ⊂ N. A is said to be locally
connected if it is locally connected at all of its points.

Fractal interpolation generates complex structures using a set of given data.
A set of data is a set of points of the form

{
(xi, Fi) ∈ R2 : i = 0, 1, 2, . . . , N},

where x0 < x1 < x2 < x3 < . . . < xN . An interpolation function corresponding
to this set of data is a continuous function f : [x0, xN ] → R such that f (xi) =
Fi for i = 1, 2, . . . , N . The points (xi, Fi) ∈ R2 are called the interpolation
points. We say that the function f interpolates the data and that f passes
through the interpolation points. The process of fractal interpolation involves
repeatedly using transformations that copy and build upon themselves. Let{
R2;wn, n = 1, 2, . . . , N} be the IFS associated with the data set {(xn, Fn) :
n = 1, 2, . . . , N}. Let the vertical scaling factor dn satisfy 0 ≤ dn < 1 for
n = 1, 2, . . . , N . Then there is a metric d equivalent to the Euclidean metric on
R2, such that the IFS is hyperbolic with respect to d. Consequently, there is a
unique nonempty compact set G ⊂ R2 such that G = ∪N

n=1wn(G).
The product of two IFSs is defined as an IFS on the product space with

contractions as the product of corresponding contraction mappings. Also, the
attractor of a product IFS coincides with the product of corresponding attractors
of IFSs in the product space. A particular type of product IFS namely the
Type 1 IFS is studied in the following section and its separation and topological
properties are discussed in the following sections.

3. Type 1 hyperbolic IFS and its attractors

Attractors in product spaces and their topological and separation properties
are discussed in the literature[27, 2, 9, 4, 5]. There are hyperbolic IFS in product
spaces that are not product IFS. Those attractors in product spaces may not
result from a product IFS. A specific collection of such IFSs is studied in this
paper. We start with a study on a collection of a special type of IFS in product
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space called Type 1 IFSs constructed using two distinct complete metric spaces
with a finite number of contraction maps. The collection of all Type 1 IFSs
contains the set of all product IFSs. i.e, every product IFS is a Type 1 IFS.
Since every IFS in higher dimensional space is not a product IFSs, the study
on these generalized IFSs is relevant in higher dimensional spaces. Type 1 IFS
helps to construct the projections of attractors in their corresponding spaces
using the projection maps. The existence of a non empty compact subset on
product space is established, and general results for Type 1 IFS are proved.

Definition 3.1. Let X and Y be complete metric spaces. Let Si1 and Si2, i =
{1, 2, · · · ,m} be contraction mappings on X and Y respectively with contractiv-
ity factors sij , j = {1, 2}. The IFS on the product space X ×Y with contraction
mappings of the form Si = (Si1, Si2) is called a Type 1 IFS and its contractivity
factor is given by r = max

1≤i≤m
max
j=1,2

sij .

Consider H(X) and H(Y ), the space of all non empty compact subsets of X
and Y with Hausdorff metric h1 and h2 respectively. The attractor of a Type 1
IFS lies in the product space, H̃ = H(X)×H(Y ).

Definition 3.2. Let {X×Y ;Sij , i = {1, 2, · · · ,m}, j = {1, 2}} be a Type 1 IFS

with contractivity factor r. Let h̃ be the metric on H̃ = H(X)×H(Y ) defined as

h̃((A1, A2), (B1, B2)) = max{h1(A1, B1), h2(A2, B2)} for all (A1, A2), (B1, B2) ∈
H̃.Define the map W̃ by W̃ (A1, A2) = (

m
∪
i=1
Si1(A1),

m
∪
i=1
Si2(A2)) for all (A1, A2) ∈

H̃.

The metric h̃ is the Hausdorff metric on H̃ and the above defined W̃ is a
contraction mapping on the complete metric space H̃, which is proved in the
following lemma.

Lemma 3.3. Let X and Y be complete metric spaces. Let Si1 and Si2, i =
{1, 2, · · · ,m} be contraction mappings on X and Y respectively with contrac-

tivity factors rij , j = {1, 2}. Let W̃ (A1, A2) = (
m
∪
i=1
Si1(A1),

m
∪
i=1
Si2(A2)) for all

(A1, A2) ∈ H̃. Then W̃ is a contraction mapping on H̃ with contractivity fac-

tor r, where r = max
1≤i≤m

max
j=1,2

{rij}. In other words, W̃ : H̃ → H̃ satisfies,

h̃(W̃ (A), W̃ (B)) ≤ r.h̃(A,B).

Proof. Let A = (A1, A2) and B = (B1, B2) belongs to H̃.

h̃(W̃ (A), (W̃ (B)) = h̃((
m
∪
i=1
Si1(A1),

m
∪
i=1
Si2(A2)), (

m
∪
i=1
Si1(B1),

m
∪
i=1
Si2(B2)))

= max{h1(
m
∪
i=1
Si1(A1),

m
∪
i=1
Si2(A2)), h2(

m
∪
i=1
Si1(B1),

m
∪
i=1
Si2(B2))}

≤ max
i

max
j

{hj(Sij(Aj), Sij(Bj))}.

Since each Sij is a contraction with contractivity factor rij , h̃(W̃ (A), (W̃ (B)) ≤
max

i
max

j
{rij .hj(Aj , Bj)} ≤ r.max

j
{hj(Aj , Bj)} = r.h̃(A,B). □
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This contraction map leads to the existence of the unique fixed point called
the attractor of the Type 1 IFS on H̃.

Theorem 3.4. Let {X × Y ;Sij , i = {1, 2, · · · ,m}, j = {1, 2}} be a Type 1 IFS
having contractivity factor r. Then there exists a unique non empty compact fixed
point for the Type 1 IFS.

Proof. The completeness of the parent spaces ensures the completeness of the
spaces (H(X), h1) and (H(Y ), h2). Each component space of H(X) × H(Y ) is

complete, giving the completeness of this product space. The map on H̃ is de-

fined by W̃ (A1, A2) = (
m
∪
i=1
Si1(A1),

m
∪
i=1
Si2(A2)) for all (A1, A2) ∈ H̃. The contin-

uous mappings Sij maps the compact sets (Aj) to the compact set Sij(Aj), j =

{1, 2}. The finite union of these sets gives the compact set
m
∪
i=1
Sij(Aj), j = {1, 2}.

The Tychonoff theorem ensures the compactness of W̃ (A1, A2). Thus the map

W̃ is a well defined contraction mapping on H̃. Finally, the contraction mapping
theorem guarantees the existence of the unique fixed point for the map W̃ on
H̃. □

Next example illustrates a Type 1 IFS in R2 and its corresponding two pro-
jection IFSs in both the coordinate axis.

Example 3.5. Consider the Type 1 IFS Φ = {R2;S1 = (x3 ,
y
3 ), S2 = ( 2x+1

4 , y+2
3 ),

S3 = (x+2
3 , y3 )} with attractor A as shown in Figure 1. The corresponding pro-

jection IFSs are Π1(Φ) = {x
3 ,

2x+1
4 , x+2

3 } and Π2(Φ) = {y
3 ,

y+2
3 }. The attractor

of the projection IFS on X axis is an overlapping set with two copies of the at-
tractor and the attractor of the projection IFS on Y axis is a totally disconnected
cantor set with two copies of the attractor.

3.1. General results on Type 1 hyperbolic IFS. In higher dimensional
spaces, especially in product spaces, to visualize and to study the attractors is
challenging. Thus studies of attractors on more elevated dimensional spaces have
more relevance. Constructing an IFS that results in an attractor in product space
has much more importance. In this section, we validate the Collage theorem for
Type 1 IFS, which constructs a Type 1 IFS whose attractor is the given fractal.
Before that, we show that the mapping of a Type 1 IFS to its attractor is
continuous.

Theorem 3.6. (Continuity theorem for Type 1 IFS.) Let (X × Y, Sij , i =
{1, 2, · · · ,m}, j = {1, 2}) and (X × Y, S′

ij , i = {1, 2, · · · ,m}, j = {1, 2}) be two
Type 1 IFSs with attractors A and A′ and contractivity factors r and r′ re-

spectively. Then, h̃(A,A′) ≤
max

k
(max

i
(hk(Sij(A), S

′
ij(A

′))))

1−min(r1,r2)
, where h̃ is the

Hausdorff metric on H̃.
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Figure 1. Attractor of Type 1 IFS Φ in Example 3.5

Proof. Let A = (A1, A2) and A
′ = (A′

1, A
′
2) belong to H ′. Then

h̃(A,A′) = max{h1(A1, A
′
1), h2(A2, A

′
2)}

≤
max

k
{max

i
{h1(Si1(A), S

′
i1(A

′)), h2(Si2(A), S
′
i2(A

′))}}

1−min{rk, r′k}

=

max
k=1,2

{ max
1≤i≤m

{hk(Si1(A), S
′
i1(A

′))}}

1− {max
k=1,2

min{rk, r′k}}
.

Let r1 = max(rij) and r2 = max(r′ij), where rij and r′ij are contractivity factors

of Sij and S′
ij respectively. Let r = max{r1, r2}. So, 1 − max

k=1,2
{min{rk, r′k}} ≥

1−min{r1, r2}. Thus, h̃(A1, A2) ≤
max(max(h(Sij(A),S′

ij(A
′))))

1−min(r1,r2)
. □

Next, we prove the Collage theorem for Type 1 IFS which constructs a Type
1 IFS whose attractor is very close to any arbitrarily chosen set with respect to
the Hausdorff metric.

Theorem 3.7. (Collage theorem for Type 1 IFS.) L ∈ H̃, ϵ > 0 be given.
A Type 1 IFS, Φ = (X × Y ;Sij , i = {1, 2, · · · ,m}, j = {1, 2}) with contractivity

factor t is chosen such that h̃(L, W̃ (L)) ≤ ϵ. Then, h̃(L,K) ≤ ϵ
1−t , K = (K1,K2)

is the attractor of the Type 1 IFS, where h̃ is the Hausdorff metric on H̃.
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Proof. Let K = (K1,K2) and L = (L1, L2). Then h̃(K,L) = max
i=1,2

(hi(Ki, Li)).

Applying the Collage theorem for the projection IFSs ΠΦ1
and ΠΦ2

of the Type 1

IFS, we get, h(L,K) ≤
h
(
L,

n
∪

i=1
Si(L)

)
1−max ri

. Then hk(Kk, Lk) ≤ hk(Kk,∪Si1(Lk))
1−max rk

, where

rij is the contractivity factors of Sij . Thus, h̃(K,L) ≤ max
i=1,2

hi(Li,
n
∪
i=1
Si1)

1− max
1≤j≤m

rij
≤

max{hi(Li,
n
∪
i=1
Si1)}

1− {max
i=1,2

{ max
1≤j≤m

rij}}
≤ h̃(L, W̃ (L))

(1− r)
≤ ϵ

1− t
. □

The general results like continuity theorem and Collage theorem are valid
for Type 1 IFS. In the next section we discuss the separation and topological
properties of Type 1 IFS with the help of projection IFSs. These properties
reveals how the attractor is occupied in the space. We relates the separation
and topological properties in the coming section.

4. Separation Properties of Type 1 IFS

In this section, we discuss the separation properties of Type 1 IFS using the
projection IFSs. Totally disconnectedness just touchingness and overlapping
conditions of Type 1 IFSs are studied using the separation properties of projec-
tion IFSs. Strong separation condition (SSC) and open set conditions for Type
1 IFS are reviewed, and results concerning the conditions of corresponding pro-
jection IFSs are obtained. A Type 1 IFS is said to satisfy SSC if the distinct
copies of attractors by the contraction maps are disjoint. It is shown that the
Type 1 IFS meets SSC if and only if any of the corresponding projection IFSs
satisfy SSC.

Definition 4.1. A Type 1 IFS Φ = {X × Y ;Si = (Si1, Si2), i = 1, 2, · · · ,m} is
said to satisfy SSC if Si ∩ Sj = ϕ, i ̸= j ∈ {i = 1, 2, · · · ,m}.

Theorem 4.2. A Type 1 IFS Φ = {X × Y ;Si = (Si1, Si2), i = 1, 2, · · · ,m}
satisfies SSC if and only if any of the projection IFSs ΠΦ1

= {X;Si1} or ΠΦ2
=

{Y ;Si2} satisfies SSC.

Proof. Let K = (K1,K2), KΦ1
and KΦ2

be the attractors of the Type 1 IFS and
projection IFSs respectively. Si(K)∩Sj(K) = (Si1, Si2)(K1)∩ (Sj1, Sj2)(K2) =
(Si1(K1) ∩ Sj1(K1), Si2(K2) ∩ Sj2(K2)). Since K1 ⊆ KΦ1 and K2 ⊆ KΦ2 , if
any of the projection IFSs say ΠΦ1 satisfies SSC then, Si1(KΦ1) ∩ Sj1(KΦ1) =
ϕ, i ̸= j ∈ {1, 2, · · · ,m} implies Si1(K1) ∩ Sj1(K1) = ϕ, i ̸= j ∈ {1, 2, · · · ,m}.
Then Si(K)∩Sj(K) = (Si1, Si2)(K1)∩(Sj1, Sj2)(K2) = ϕ. Thus the Type 1 IFS
satisfies SSC. Conversely, the Type 1 IFS satisfies the SSC then Si(K)∩Sj(K) =
(Si1, Si2)(K1) ∩ (Sj1, Sj2)(K2) = (Si1(K1) ∩ Sj1(K1), Si2(K2) ∩ Sj2(K2)) = ϕ.
Thus any of the projection IFSs satisfy SSC. □
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4.1. Open set condition for Type 1 IFS. Attractors constructed using
iterated function systems show totally disconnectedness, just touchingness and
overlapping separation conditions. These separation properties are described
according to the existence of a non empty open set satisfying the open set con-
dition(OSC). OSC is an accepted criterion controlling the overlapping of fractal
structures. In this subsection, we define the OSC for Type 1 IFS and study
an algebraic equivalence for this condition using neighbor maps for Type 1 IFS.
The conditions of the Type 1 IFS such that the corresponding projection IFSs
satisfy the OSC is also studied.

Definition 4.3. A Type 1 IFS satisfies OSC if and only if there exists open set
V = (V1, V2) in X × Y such that

(1)
m
∪
i=1
Sil(Vl) ⊂ Vl, l = {1, 2}.

(2) Sil(Vl) ∩ Sjl(Vl) = ϕ for all i ̸= j ∈ {1, 2, · · · ,m}, l = {1, 2}.

The following result shows a relation between the OSC of the Type 1 IFS
with the OSC of the corresponding projection IFS. It is shown that either of the
projection IFS satisfies the OSC when the Type 1 IFS meets OSC and the Type
1 IFS satisfies OSC if both the projection IFS satisfies OSC.

Theorem 4.4. If Type 1 IFS Φ = {X × Y ;Si = (Si1, Si2), i = 1, 2, · · ·m}
satisfies OSC then at least one of the projection IFS satisfies OSC.

Proof. The first condition of the OSC of the Type 1 IFS Φ implies that there exist

an open set V = (V1, V2) ⊂ (X1, X2) such that
m
∪
i=1

(Si1, Si2)(V1, V2) ⊂ (V1, V2).

Then
m
∪
i=1
Sil(Vl) ⊂ Vl, l = {1, 2}. Thus

m
∪
i=1
Si1(V1) ⊂ V1 and

m
∪
i=1
Si2(V2) ⊂ V2.

This establishes the first condition of OSC for the projection IFSs ΠΦ1
and ΠΦ2

of the Type 1 IFS Φ. The second condition of the OSC for Type 1 IFS gives,
Sil(Vl) ∩ Sjl(Vl) = ϕ for all i ̸= j ∈ {1, 2, · · · ,m}, l = {1, 2}. i.e., (Si1(V1) ∩
Sj1(V1), Si2(V2)∩Sj2(V2)) = ϕ for all i ̸= j ∈ {1, 2, · · · ,m}. Then either Si1(V1)∩
Sj1(V1) = ϕ or Si2(V2)∩Sj2(V2)) = ϕ for all i ̸= j ∈ {1, 2, · · · ,m} implies either
ΠΦ1

or ΠΦ2
satisfies the second condition for the OSC. So, either of the projection

IFSs satisfies the OSC. □

The converse of the above result is not valid. Any projection IFS that satisfies
OSC need not imply the OSC of the Type 1 IFS. It is enough that any of the
projection IFS satisfies the OSC for the Type 1 IFS to satisfy the second condi-
tion of OSC. But the first condition for OSC is met only if both the projection
IFS satisfy the OSC. Thus the result is true if both of the projection IFSs satisfy
the OSC. This is proved in the following theorem.

Theorem 4.5. Let Φ = {X × Y ;Si = (Si1, Si2), i = 1, 2, · · · ,m} be a Type 1
IFS. If the corresponding IFSs ΠΦ1

and ΠΦ2
satisfy the OSC, then so does the

Type 1 IFS, Φ.
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Proof. OSC of the projection IFSs implies there exist VΠΦ1
⊆ X1 and VΠΦ2

⊆ X2

such that
m
∪
i=1
Si(VΠΦ1

) ⊂ VΠΦ1
and

m
∪
i=1
Si(VΠΦ2

) ⊂ VΠΦ2
. Then (

m
∪
i=1
Si(VΠΦ1

),
m
∪
i=1
Si(VΠΦ2

)) ⊂ (VΠΦ1
, VΠΦ2

). Thus the Type 1 IFS satisfies the first condi-

tion for the OSC with the open set V = (VΠΦ1
, VΠΦ2

). Now, since Si(VΠΦl
) ∩

Sjl(VΠΦl
) = ϕ for all i ̸= j ∈ {1, 2, · · · ,m}, l = {1, 2} implies (Si1(VΠΦ1

) ∩
Sj1(VΠΦ1

), Si2(VΠΦ2
) ∩ Sj2(VΠΦ2

)) = ϕ. Thus, the Type 1 IFS satisfies the sec-

ond condition of the OSC with the open set V = (VΠΦ1
, VΠΦ2

). This completes
the proof. □

The set V = (V1, V2) satisfying the OSC is called a feasible open set for
the Type 1 IFS or for the attractor. Band and Graf give an algebraically
equivalent condition for OSC [7]. The map S−1

i transforms the pieces Si(A)

and Sj(A) to attractor and h(A) = S−1
i Sj(A) respectively. The other condi-

tion for the OSC can be treated as Sil(Vl) ∩ Sjl(Vl) = ϕ for all i = j and is

equivalent to V ∩ S−1
i Sj(V ) = ϕ. Thus if the Type 1 IFS satisfies the open

set condition, then the map h = S−1
i Sj cannot be near the identity map id.

Let S∗ = ∪
n≥1

Sn. The maps in the set N = {h = S−1
i Sj ; i, j ∈ S∗, i1 ̸= j1}

= {(Si1(x), Si1(y))
(−1)(Sj1(x), Sj1(y)); i, j ∈ {1, 2, · · · ,m}, i ̸= j} are called

neighbor maps. If a point (x, y) ∈ X × Y is contained in a feasible open set
V = (V1, V2) then (x, y) is said to be forbidden point for A = (A1, A2). The
points of the neighbor map set, H = {h(A);h ∈ N}, are not contained in any
of the feasible sets. Next, we discuss the points on the closure of the collection
of fixed points of neighbor maps. Let J denotes the collection of fixed points of
neighbor maps. i.e, J = {(x, y); (S−1

i1 (Sj1), S
−1
i2 (Sj2))(x, y) = (x, y)}.

Theorem 4.6. Every limit of fixed points of neighbour maps of a Type 1 IFS
are forbidden points of its attractor, K = (K1,K2).

Proof. If (x, y) ∈ J is contained in an open set V = (V1, V2), then by def-
inition of J, for a neighbor map say, (S−1

i1 (Sj1), S
−1
i2 (Sj2)) its fixed point is

contained in this open set. V contains the fixed point (y1, y2) of a neigh-
bor map, say, (S−1

i1 (Sj1), S
−1
i2 (Sj2)). ie., (S

−1
i1 (Sj1), S

−1
i2 (Sj2))(y1, y2) = (y1, y2).

Thus (Sj1, Sj2)(y1, y2) = (Si1(y1), Si2(y2)). So, Si1(V1)∩Sj1(V1) = ϕ and Si2(V2)
∩Sj2(V2) = ϕ, implies Sj1(y1) = Si1(y1) and Sj2(y2) = Si2(y2). Thus V is not
feasible, and hence (x, y) is a forbidden point of the attractor. □

Theorem 4.7. The neighbor map set of a Type 1 IFS is a subset of the closure
of the fixed points of its neighbor maps. i.e, H ⊂ J.

Proof. Let b ∈ H, say (b1, b2) ∈ S−1
i1 (Sj1), S

−1
i2 (Sj2)(K1,K2). Choose contractive

map h such that Si1(b1) ∈ Sj1(K1) and Si2(b1) ∈ Sj2(K2). Consider the fixed

point (c1, c2) for the contractive mapping h = S−1
i Sj . Let a = h−1(b). Since

|c− b| = rh|c− a|. The sequence hn such that b ∈ hn(A) shows that rh limits to
0 and a is finite since it is in K. So the fixed points of hn limit to b. □
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Now we will discuss the points other than the closure of fixed points of neigh-
bour maps which are forbidden points. This result shows that there are no such
points.

Theorem 4.8. For an ϵ > 0, there exists a neighbor map, h for any given
forbidden point x = (x1, x2) of the attractor, K = (K1,K2) of a Type 1 IFS
such that |h(x)− x| < ϵ.

Proof. Consider the open ball B having center (x1, x2) with radius ϵ
2 . Since

the open set V = ∪
i∈S∗

Si(B) is not a feasible open set, Si(V ) ∩ Sj(V ) ̸= ϕ for

some i ̸= j. Then there exist i,j ∈ S∗ satisfying SiSi(B) ∩ SjSj(B) ̸= ϕ. So the

contractive mapping h = S−1
ii or its inverse satisfies the desired condition. □

Next example illustrates a Type 1 IFS in R2 and the separation properties of
its corresponding two projection IFS attractors in both the coordinate axis.

Example 4.9. Consider the Type 1 IFS {R2;S1 = (x3 ,
y
3 ), S2 = ( 2x+1

4 , y+2
3 ), S3 =

(x+2
3 , y3 )}. The corresponding projection IFSs Π1(Φ) = {x

3 ,
2x+1

4 , x+2
3 } has an

overlapping attractor and Π2(Φ) = {y
3 ,

y+2
3 } has a totally disconnected attrac-

tor.

Next, we propose constructing a feasible open set satisfying the open set
condition.

Theorem 4.10. Let {X×Y ;Sij , i = {1, 2, · · · ,m}, j = {1, 2}} be a Type 1 IFS.
If V = (V1, V2) ⊂ VC be non empty open set then U =

⋃
l

Sl((V1, V2)) where union

is taken over all words l satisfies the OSC.

Proof. By definition of the proposed open set, U = (U1, U2), S1(U1, U2) ⊂
(U1, U2). Since points of S

−1
i Sj(VC) are near to S

−1
i Sj(A) than toK and V ⊂ VC

implies V ∩ S−1
i Sj(V ) = ϕ for every neighbor maps h = S−1

i Sj . Now if suppose
x = (x1, x2) ∈ Si(U)∩Sj(U), x ∈ (SjSl(V )∩SjS

′
l(V )) for some words l, l′ which

is not possible since V ∩S−1
j SjV = ϕ for every neighbor maps h = S−1

i Sj . Thus
the proposed open set U satisfies the OSC. □

Separation properties of Type 1 IFS is studied using the corresponding pro-
jection IFSs and an equivalent condition for the separation property OSC is
studied in Type 1 IFS. The connectedness property of attractor of Type 1 IFS
will be discussed in the next session.

5. Connectedness of attractor of Type 1 hyperbolic IFS

Topology is an efficient tool to study how a structure behaves spatially. This
section equips with the topological aspects of sets defined by Type 1 IFS. Type
1 IFS is studied as a sub-IFS of the corresponding product IFS of the projec-
tion maps[2]. Here we deal with the connectedness properties of Type 1 IFS
attractors.
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Figure 4.

2

Figure 2. A line fractal with a polygonal set for the
construction of feasible open set in Theorem 4.10

Theorem 5.1. A Type 1 IFS attractor, KΦ is a subset of the attractor of product
IFS of the projection IFSs Π1(Φ) and Π2(Φ).

A subspace of a totally disconnected space is also totally disconnected, giving
the following analogy.

Corollary 5.2. Let Φ be a Type 1 IFS. If the attractor of product IFS of the
projection IFSs Π1(Φ) and Π2(Φ) is totally disconnected, then the attractor of
Φ is totally disconnected.

5.1. Connected attractors of Type 1 IFS. In general, topological spaces
arc wise connected imply connectedness. But the converse is not valid. Here we
show that connectedness and arc wise connectedness is equivalent to a condition.

Theorem 5.3. If the attractor K = (K1,K2) of a Type 1 IFS, Φ = {X ×
Y ;S1, S2, · · · , Sm} where each Si(x, y) = (Si1(x), Si2(y)) is connected then

Sil(Kl) ∩ Sjl(Kl) ̸= ϕ, i ̸= j ∈ {1, 2, · · · ,m}, l = {1, 2}.

Proof. Suppose that K is connected. Then both K1 and K2 are connected.
Then Kl = U ∪ V, where U and V are some closed subsets of Kl, l = {1, 2} such

that U ∩ V ̸= ϕ. Also Ki =
m
∪

j=1
Sij(Ki). Since continuous image of closed set

is closed and finite union of closed sets is closed, we can let U = Sil(Kl) and

V =
m
∪

j=1,j ̸=i
Sjl(Kl). Also Sil(Kl) ∩

m
∪

j=1,j ̸=i
Sjl(Kl) ̸= ϕ. Since U ∩ V ̸= ϕ, we

get Sil(Kl) ∩ Sjl(Kl) ̸= ϕ for some i ̸= j ∈ {1, 2, · · · ,m}. The result is true for
l = {1, 2}. So Sil(Kl) ∩ Sjl(Kl) ̸= ϕ, i ̸= j ∈ {1, 2, · · · ,m}, l = {1, 2}. □
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5.2. Arc wise connected attractors of Type 1 IFS. Another related con-
dition is arc wise connectedness. Connectedness neither implies nor implied by
arc wise connectedness in general. This section deals with the arc wise connect-
edness property of Type 1 IFS attractors.

Theorem 5.4. If Sil(Kl)∩Sjl(Kl) ̸= ϕ, i ̸= j ∈ {1, 2, · · · ,m}, l = {1, 2}, then
the attractor K = (K1,K2) of the Type 1 IFS is arc wise connected.

Proof. To prove that the attractor K = (K1,K2) is arc wise connected, it is
enough to prove that each of its components is arc wise connected. For this,
we prove that each component Kl is arc wise connected. Define, A = {fl :
K2

l × [0, 1] → Kl; fl(pl, ql, 0) = pl and fl(pl, ql, 1) = ql, pl, ql ∈ Kl}. For
the metric ρ on the collection of all continuous functions on X by, ρ(f, g) =
sup
x∈X

{d(f(x), g(x))}, the metric space (A, ρ) is a complete metric space. Con-

sider a sequence {xl0, xl1, · · · , xlk} ∈ Kl such that xl0 = pl and xlk = ql.
Suppose that xli ∈ Sil(Kl) and xlj ∈ Sjl(Kl). For fl ∈ A, define Slfl ∈ A as,

Slfl(pl, ql, t) = Slj(fl(S
−1
lj (xlj), S

−1
lj (xlj), jt − k)), for k

j ≤ t ≤ k+1
j , 0 ≤ j ≤ k.

Then {Sm
l fl}∞m=1 is a Cauchy sequence. Therefore there exist an f∗l ∈ A such

that Sm
l fl converges to f∗l where f∗ : K2

l × [0, 1] → Kl. Consider the met-
ric, D(Sm

l fl, u) = sup{ lim
n→∞

d(Sm
l fl(rn), S

m
l fl(sn)), lim

n→∞
rn = lim

n→∞
sn = u} for

rn, sn ∈ K2
l × [0, 1]. Then D(Sm

l fl, u) = 0. Therefore f∗l ∈ A is continuous at u.
That is, f∗l is a continuous arc between pl and ql. So Kl is arc wise connected.
Hence K is arc wise connected. □

5.3. Locally connected attractors of Type 1 IFS. This section deals
with the locally connectedness property of Type 1 IFS attractors. The finite
connectedness property is studied to show the equivalence of connectedness and
locally connectedness of Type 1 IFS attractors.

Definition 5.5. (Finite connectedness property.) A product space C satisfies
finite connected property if for any ϵ > 0, each factor of C is a finite union of
connected sets, each of whose diameter is less than ϵ.

A necessary condition of a Type 1 IFS to satisfy finite connectedness property
is obtained in the next theorem.

Theorem 5.6. If Sil(Kl)∩Sjl(Kl) ̸= ϕ, i ̸= j ∈ {1, 2, · · · ,m}, l = {1, 2}, then
the attractor K = (K1,K2), of the Type 1 IFS satisfies the finite connectedness
property.

Proof. K is connected, since Sil(Kl) ∩ Sjl(Kl) ̸= ϕ, i ̸= j ∈ {1, 2, · · · ,m}, l =
{1, 2}. So each of the factors Kl is connected. K = ( ∪

q∈J
S1(e)(K1), ∪

q∈J
S2(e)(K2))

where Sl(e) = Sj1l ◦ Sj2l ◦ · · · ◦ Sjql, jk ∈ {1, 2, · · · ,m}. Since connectedness is
preserved under continuous functions, Sl(e)(Kl) is connected. So ∪

q∈J
S1(e)(K1) is

a factor of K, is a finite union of connected sets. diam(Sl(e)(Kl)) = diam(Sj1l ◦
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Sj2l ◦ · · · ◦Sjql(Kl)) ≤ tlj1 ∗ tlj2 · · · ∗ tljq ∗ diam(Kl) ≤ tl ∗ tl · · · ∗ tl ∗ diam(Kl) =
tql ∗ diam(Kl).
where ∗ denotes the usual multiplication. Since 0 ≤ tl = max tlj < 1, without
loss of generality we choose an ϵ > 0 for a large q such that diam(Sl(e)(Kl)) < ϵ.
Thus, each factor of K is a finite union of connected sets, each of whose diameter
is less than ϵ. So K satisfies the finite connectedness property. □

A direct consequence result for a necessary condition for finite connectedness
of a Type 1 IFS using connectedness property follows from the above result.

Corollary 5.7. If the attractor K of Type 1 IFS is connected, then K satisfies
the finite connected property.

Another consequence result for a necessary condition for finite connectedness
of a Type 1 IFS using arc wise connectedness property follows from the above
result.

Corollary 5.8. If the attractor K of Type 1 IFS is arc wise connected, then K
satisfies the finite connected property.

Theorem 5.9. If the attractor K = (K1,K2) of a Type 1 IFS satisfies the finite
connected property, then both K1 and K2 are locally connected.

Proof. If the attractor K = (K1,K2) satisfies the finite connected property,

then for every ϵ > 0,Ki =
p
∪

k=1
Mik , where Mik is a connected set with diameter

less than ϵ. Consider xi ∈ Ki. Then xi belongs to some of the M ′
iks for k =

{1, 2, , · · · , p}. Let Ci be the union of M ′
iks that contains xi. Since a finite union

of connected sets with a common point is connected, Ci is connected. Clearly
xi does not belongs to Ki \ Ci and diam(Ci) < ϵ. Then diam(xi,Ki \ Ci) > 0.
Therefore, for each ϵ > 0, there exist δ < ϵ such that Bi(xi, δ) ∩ (Ki \ Ci) = ϕ,
where Bi(xi, δ) is the δ−neighbourhood of xi. Then, Bi(xi, δ)∩Ki = Bi(xi, δ)∩
Ci. Since xi ∈ Ci and Ci is connected, Bi(xi, δ) ∩ Ci is connected. Therefore,
Bi(xi, δ)∩Ki is connected. Thus, for every ϵ−neighbourhood of xi, there exists a
connected δ−neighbourhood of xi such that Bi(xi, δ)∩Ci ⊂ Bi(xi, δ). Therefore,
Ki is locally connected at xi. Since xi is arbitrary, the factor Ki is locally
connected. The result holds for all i ∈ {1, 2}. □

A characterisation result of locally connectedness of a product space using
locally connectedness of each coordinate space is given by K. D. Joshi [18]

Theorem 5.10. A product space is locally connected if and only if each co-
ordinate space is locally connected and all except finitely many of them are con-
nected.

Theorem 5.11. If the attractor K = (K1,K2) of a Type 1 IFS is connected,
then K is locally connected.
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Figure 3. Attractor of Type 1 IFS Ψ in Example 5.13

Proof. Suppose that K = (K1,K2) is connected. Then both K1 and K2 are
connected. Also, K satisfies finite product property. Therefore, each factor Ki

is locally connected. So K is locally connected. □

The proved results and the result that a compact locally connected continuum
is arc wise connected gives the following theorem.

Theorem 5.12. Let K be an attractor of a Type 1 IFS, {X × Y ;Sij , i =
{1, 2, · · · ,m}, j = {1, 2}}. Then the following are equivalent:

(1) Sil(Kl) ∩ Sjl(Kl) ̸= ϕ, i ̸= j ∈ {1, 2, · · · ,m}, l = {1, 2}.
(2) K is connected.
(3) K is arc wise connected.
(4) K is locally connected.

Example 5.13. Consider the Type 1 IFS Ψ = {R2;S1, S2} where S1 = (x2 ,
y
3 )

and S2 = (x2 + 1
2 ,

y
3 + 2

3 ). The projection IFSs are Π1 = {R; x
2 ,

x
2 + 1

2} and

Π2 = {R; y
3 ,

y
3 + 2

3}. The attractor of the Type 1 IFS is A = (A1, A2) where
A1 = [0, 1] and A2 is the classical cantor set. S11(A1) ∩ S21(A1) ̸= ϕ but
S12(A2) ∩ S22(A2) = ϕ. So the attractor of this Type 1 IFS Ψ is not connected.
The attractor of this Type 1 IFS Ψ is shown in Figure 3.
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6. Relating separation properties and topological properties

It is commonly accepted that the overlapping of self similar fractals is con-
trolled by the separation properties of the corresponding iterated function sys-
tem. The separation properties of Type 1 IFS are studied using the separation
properties of the corresponding projection IFSs. A Type 1 IFS is totally dis-
connected if both the projection IFSs are totally disconnected. A Type 1 IFS
is just touching if any of the projection IFS is just touching and the other is
totally disconnected. A Type 1 IFS is overlapping if any corresponding projec-
tion IFS is overlapping. Now we study how the OSC affects the connectedness
of an attractor of Type 1 IFS. The notion of addressing points on the attractor
is carried over to the attractors of product spaces to study the particular case of
Type 1 IFS. The relation between the separation property, totally disconnected-
ness of an IFS, and the topological property, totally disconnectedness of an IFS
attractor, is also studied.

Let {X × Y ;S1, S2, · · · , SN}, Si = (Si1(x), Si2(y)) be a Type 1 IFS on a
complete metric space (X×Y, d). Let (Σ×Σ, dc) be the associated code space of
the Type 1 IFS. For (σ, ω) ∈ Σ×Σ, n ∈ N, and (x, y) ∈ X×Y. Define ϕ : Σ×Σ →
X×Y by ϕ((σ, ω), n, (x, y)) = (Sσ1Sσ2Sσ3 · · · (x), Sω1Sω2Sω3 · · · (y)). Then there
is a real constant D such that d(ϕ((σ, ω),m, (x1, y1)), ϕ((σ, ω), n, (x2, y2))) ≤
D ∗ Sm∧n. Then, ϕ(σ, ω) = lim

n→∞
ϕ((σ, ω), n, (x, y)) exists and belongs to X × Y

and is independent of (x, y). An address of a point (a1, a2) ∈ X×Y is an element
of the collection ϕ−1(x, y) = {(σ, ω) ∈ Σ× Σ;ϕ(σ, ω) = (x, y)}.

Theorem 6.1. An attractor is topologically totally disconnected if the corre-
sponding IFS satisfies the totally disconnectedness separation property.

Proof. An IFS with attractor K is totally disconnected implies ωi(K)∩ωj(K) =
ϕ for every i, j ∈ {1, 2, · · · , n}. Then, ωi(K) ∩ ωj(K) = ϕ for every i, j ∈
{1, 2, · · · , n} implies K is topologically totally disconnected. □

The converse of the theorem is not valid. An attractor on a product IFS which
is topologically totally disconnected but does not satisfy totally disconnectedness
separation property is illustrated in the next example.

Example 6.2. Consider the product of IFSs ψ = {R2; s1 = (x3 ,
y
3 ),

s2 = (x+1
3 , y+2

3 ), s3 = (x+2
3 , y3 )} and ϕ = {R2; s′1 = (x3 ,

y
3 ), s

′
2 = ( 2x+1

4 , y+2
3 ), s′3 =

(x+2
3 , y3 )}. The Type 1 IFS ψ constructs an attractor in R2 with the totally dis-

connected classical Cantor set in the first coordinate axis and another totally
disconnected attractor of two copies in the second coordinate axis. Thus the
Type 1 IFS ψ is totally disconnected. Thus the product IFS of the totally dis-
connected IFS ψ and the overlapping Type 1 IFS ϕ generates an overlapping
IFS with attractor having a point with two different addresses. But since one of
the attractor is a totally disconnected space, the product IFS ψ×ϕ has a totally
disconnected attractor.
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It is clear that an IFS satisfying strong OSC constructs totally disconnected
attractors. Also, the overlapping IFSs do not assure OSC. Next, we study the
totally disconnected and just touching IFSs having obstacle OSC. We define
doubly recurrent addresses in the product spaces to examine such cases.

Definition 6.3. An address in product space (s11, s12, s21, s22, s13, s23, · · · ) is
said to be doubly recurrent if forK1,K2 ≥ 1 there are n1, n2 ≥ 1 with s1i, s2i, · · · ,
sKji = s(n+1)i, s(n+2)i · · · , s(n+Kj)i.

Now we show an obstacle condition for the OSC in product spaces. Identifying
a doubly recurrent address is an obstacle to the open set condition.

Theorem 6.4. Let {X × Y ;Sij , i = {1, 2, · · · ,m}, j = {1, 2}} be a Type 1 IFS.
If a point on the attractor, (ai, aj) ∈ KSi ∩KSj has a doubly recurrent address,
then the Type 1 IFS cannot hold the OSC.

Proof. It is enough to show that the attractor satisfies the finite clustering prop-
erty. By finite clustering property, an attractor K cannot satisfy OSC if for any
n ∈ N there is a copy Ki intersecting with at least n other non comparable
copies Kj with diam(Kj) ≥ diam(Kj). For a given n, let a point say, (a1, a2) ∈
KS1

∩KS2
, S1 ̸= S2 have a doubly recurrent address s = s11, s12, s21, s22, · · · and

another address t. Fix the initial word i = i11, i12, i21, i22, · · · , in1, in2 of the se-
quence s such that there are ilikj , ili+1kj+1 , · · · , in1, in2 = s11, s12, · · · , sli(n−kj),
sli+1(n−kj+1) for li, i = 1, 2. Define jk = i11, i12, · · · , ilikj

, ili+1kj+1
, t. Then,

Si11i12···ilikj
ili+1kj+1

(a1, a2) ∈ Ki∩Kjk . ThusKi intersects with n non-comparable

copies of Kjk . So the Type 1 IFS does not satisfy OSC. □

A totally disconnected attractor need not necessarily result from a totally
disconnected IFS. In product spaces, separation properties of product spaces
were explained in terms of their corresponding coordinate IFSs in [2]. It is
shown that a Type 1 IFS is totally disconnected if both the projection IFS are
totally disconnected. An example of a Type 1 IFS which is neither connected
nor totally disconnected is provided.

Example 6.5. Consider the IFS χ = {X×Y ;S1, S2, S3} = ϕ such that S1(x, y) =
(x2 + 1

2 , 0), S2(x, y) = (x2 − 1
2 , 0), S3(x, y) = (x2 ,

y
2 + 1

2 ). Let K be the square
[−1, 1] × [−1, 1] then, S1(K) = [0, 1] × {0}, S2(K) = [−1, 0] × {0}, S3(K) =
[−1

2 ,
1
2 ]× [ 34 ,

5
4 ]. The projection IFSs Πχ1

= {x
2 +

1
2 ,

x
2 −

1
2 ,

x
2} and Πχ2

= {y
2 +

1
2}.

The attractors of the projection IFSs Φχ1 and Φχ2 are the connected subsets
[−1, 1]× {0} and {0} × [ 34 ,

5
4 ] respectively. The Type 1 IFS attractor is neither

connected nor totally disconnected. The first iterate to the attractor of the Type
1 IFS to determine the connectedness of the attractor is shown in Figure 4.
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4

Figure 4. First iterate to the attractor of the Type 1 IFS χ
to determine the connectedness of the attractor in Example 6.5

7. Application

Fractal geometry has considerable applications in various fields, especially in
modeling irregular structures in higher dimensional spaces and thereby to study
these complex structures. Major applications of fractal geometry include ex-
tracting data from images and analyzing to get conclusions. Nature uses fractal
modeling for its construction. Self similar structures in nature can be approxi-
mated using fractal sets. In finance, modeling the fractal structure of financial
assets predicts prices and crises in the market. Soft computing uses fractal pa-
rameters to explain transmission dynamics of various diseases[28]. Fractional
properties like space fillingness, fractional dimensions, symmetricity, complex-
ity, etc., are utilized for these analyses. Intense research is carried out in Fractal
radios and Fractal Antennas[14]. Fractal image compression gives the most ac-
ceptable compression ratios compared to the standard image compression tech-
niques.

In 2010, Bulusu Rama and Jibitesh Mishra introduced a construction of the
3D form of the popular fractals, the Mandelbrot Set and Julia Set which re-
sembles the real world structures[26]. In 2014, Ankit Garg et al. designed an
algorith to create 3D models using a basic model which is a cube or a sphere.
A reccursive is iterated a specific number of times to create a 3D fractal model
which is illustrated in Figure 5[12].

In this section, an application of simulation of a fractal structure in R3 is
proposed using the theory of Type 1 IFS and fractal interpolation function.
Simulation of a fractal structure using Iterated function system commences with
an initial image and thereupon a series of contractive mappings are applied sys-
tematically. Thus obtained attractor of the IFS represents a complex image.
We use Barnsley’s interpolation method to find a best fit affine transformation
for a given set of N + 1 data points say, (x0, y0), (x1, y1), · · · , (xN , yN ). An IFS
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Figure 5. Construction of 3D models using a basic model
which is a sphere

{R2;S1, S2, · · · , SN} of affine transformations is obtained. The affine transfor-
mations,

Si

(
x
y

)
=

(
ai 0
ci di

)
+

(
ei
fi

)
, for i = {1, 2, · · · , N}.

and the conditions

Si

(
x0
y0

)
=

(
xi−1

yi−1

)
and Si

(
xN
yN

)
=

(
xi
yi

)
form four linear equations whose solutions give,

ai =
xi−xi−1

xN−x0
, ci =

yi−yi−1

xN−x0
− di(

yN−y0

xN−x0
),

ei =
xNxi−1−x0xi

xN−x0
, fi =

xNyi−1−x0yi

xN−x0
− di(

xNy0−x0yN

xN−x0
)

for i = 1, 2, · · · , N. The mappings Sis are contractive since the free parameter
di satisfies 0 ≤ di < 1. The other real parameters ai, ci, ei and fi are calculated
using the interpolation data.
Now, there exist a unique non empty compact subset K ⊂ R2 corresponding to

this hyperbolic IFS such that K =
n
∪
i=1
Si(K) and the curve K of the continuous

function f : [x0, xN ] → R, interpolates the given data {(x0, y0), (x1, y1), · · · , (xN ,
yN )}. This continuous map f(x) is called the fractal interpolation function (FIF).

We propose constructing 3D fractal structures using projection IFSs of a Type
1 IFS. Consider two different 2D images of a 3D structure from different posi-
tions. The outline of the 2D images are analysed using the CAD program to ob-
tain a data sets, {(x10 , y10), (x11 , y11), · · · (x1n1

, y1n1
)} and {(x20 , y20), (x21 , y21),

· · · , (x2n2 , y2n2)}. The method of fractal interpolation function gives IFSs, IFS1

and IFS2 corresponding to the obtained data sets. Let IFS1 = {R2;S11, S12, · · · ,
S1n1

} with contractivity factor s1 = max
1≤i≤n1

s1i where s1i is the contractiv-

ity factor of S1i and IFS2 = {R2;S21, S22, · · · , S2n2
} with contractivity factor
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s2 = max
1≤i≤n2

s2i where s2i is the contractivity factor of S2i. The affine transfor-

mations

Sij

(
x
y

)
=

(
aij 0
cij dij

)
+

(
eij
fij

)
, for, i = {1, 2}, j = {1, 2, · · · , ni}

Then, the unique compact sets K1 =
n1∪
i=1
S1i(K1) and K2 =

n2∪
i=1
S2i(K2) are

approximations of given 2D images.
Now, two projection IFSs of the Type 1 IFS which construct the 3D fractal

image are constructed. The first projection IFS on R is constructed as follows:

Using the parameters of FIF, choose the parameters r1 =
s11+s12+···+s1n1

n1
, r2 =

s21+s22+···+s2n2

n2
, x1 = e11 + e12 + · · · + e1n1 , y1 = f11 + f12 + · · · + f1n1 , x2 =

e21+e22+· · ·+e2n2
, y2 = f21+f22+· · ·+f2n2

. Let the IFS takes the form {R;S1}.
The contraction map S : R → R is defined as S(x) = rmaxx + Rmax, where
rmax = max{r1, r2} and Rmax = max{x1, y1, x2, y2}. The second projection IFS
is taken from one of the two IFSs, IFS1 and IFS2, considering the radius of
the bounding circle of the attractor, contractivity factor of IFS, and the fractal
dimension of the attractor. Let the chosen IFS be {R2;S21, S22, · · · , S2N}. Thus,
a Type 1 IFS attractor is constructed in R3 corresponding to the given 2D images
whose projection IFSs are obtained above. For the Type 1 IFS {R3;Si}, where
Si = (S1, S2i), there exist a unique non empty compact attractor K in R3 such

that K = (S1(K),
n
∪

j=1
S2j(K)). A compact subset in R3, G = B × [a, b] where

B is a box in R2 containing the 2D image results to the 3D fractal image, K
under Type 1 IFS iterations. Thus this Type 1 IFS attractor approximates the
3D fractal image of the two given 2D images.

8. Conclusion

Self similar sets and their applications can be seen in natural science, medical
science, and all areas where irregularity is to be modeled. The study of the
separation and topological properties of these types of structures in product
spaces has much more importance. In this paper, a special type of attractor
in product space, named Type 1 IFS is studied. The existence of the unique
fixed point called the attractor of the Type 1 IFS is proved. The general results,
Collage theorem and continuity theorem is verified for Type 1 IFS. Separation
property, OSC, and its topological property, connectedness are discussed. It is
shown that the Type 1 IFS meets SSC if and only if any of the corresponding
projection IFSs satisfy SSC. The conditions of the Type 1 IFS such that the
corresponding projection IFSs satisfy the OSC is also proved. An algebraic
equivalence for OSC is studied to characterize the feasible open set satisfying
OSC. Connectedness properties of attractors of Type 1 IFS are established,
and an equivalence condition for these properties is obtained. These properties
are related by a generalized address system in product spaces. A 3D fractal
image is constructed as an attractor of Type 1 IFS using two 2D images from
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different positions. However generating fractal interpolants with good precision
require computational resources. As a future work, studies on the constructed
3D fractal image can also be conducted to analyze many fractal properties. More
applications in the field of digital topology, ocean sciences, natural science and
medical science are possible. The wide range of applications of fractal theory
can leads to the development in many areas of science.
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