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ON THE LOWER SEMICONTINUITY OF THE SOLUTION

SETS FOR PARAMETRIC GENERALIZED VECTOR MIXED

QUASIVARIATIONAL INEQUALITY PROBLEMS

Nguyen Van Hung

Abstract. In this paper, we establish sufficient conditions for the solu-
tion set of parametric generalized vector mixed quasivariational inequality
problem to have the semicontinuities such as the inner-openness, lower
semicontinuity and Hausdorff lower semicontinuity. Moreover, a key as-
sumption is introduced by virtue of a parametric gap function by using
a nonlinear scalarization function. Then, by using the key assumption,
we establish condition (Hh(γ0, λ0, µ0)) is a sufficient and necessary con-
dition for the Hausdorff lower semicontinuity, continuity and Hausdorff
continuity of the solution set for this problem in Hausdorff topological
vector spaces with the objective space being infinite dimensional. The
results presented in this paper are different and extend from some main
results in the literature.

1. Introduction

A vector variational inequality in a finite-dimensional Euclidean space was
introduced first by Giannessi [16]. Later, many authors have investigated vec-
tor variational inequality problems in abstract spaces, see [1, 13, 19, 20, 24,
26, 27, 29, 30, 31, 35, 36, 38]. With the development of the theory about
vector variational inequality problems, it has been seen that vector variational
inequality problems have many important applications in vector optimization
problems, see [25, 37], vector equilibria problems, see [2, 3, 4, 5, 6, 7, 8, 10, 11,
15, 17, 21, 22, 28, 32, 33, 34, 39], variational relation problems, see [17, 18, 23]
and the references therein.

In 2009, Li and Chen [30] and in 2010, Chen et al. [13] introduced a key
assumption by virtue of a parametric gap function and proved that the con-
dition (Hg) is a sufficient condition for the Hausdorff lower semicontinuity of
the solution set for vector variational inequalities. Recently, Zhong and Huang
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[38, 39] also introduced the condition (H ′

g) which is similar to the one given in
[13, 30] and proved that it is a sufficient and necessary condition for the Haus-
dorff lower semicontinuity of the solution set for parametric set-valued weak
vector variational inequalities and for parametric generalized vector quasiequi-
librium problem in Banach spaces. Very recently, Hung [19] also studied a class
of parametric generalized vector mixed quasivariational inequality problem in
Hausdorff topological vector spaces and established the sufficient conditions for
the semicontinuity of the solution set such as upper semicontinuity, closedness,
outer-continuity and outer-openness. Moreover, the assumption (Hh(γ0, µ0))
is a sufficient and necessary condition for the Hausdorff lower semicontinuity,
continuity and Hausdorff continuity of the solution set for this problem are also
obtained.

Motivated by research works mentioned above, in this paper, we introduce a
different kind of parametric generalized vector mixed quasivariational inequal-
ity problem in Hausdorff topological vector spaces. Let X,Y be two Hausdorff
topological vector spaces and Γ,Λ,M be three topological vector spaces. Let
L(X,Y ) be the space of all linear continuous operators from X to Y . Let
K : X×Γ → 2X , T : X×M → 2L(X,Y ) be two set-valued mappings and C be a
closed convex cone in Y with intC 6= ∅. Let η : X×X×Λ → X,ψ : X×X×Λ →
Y be two continuous vector-valued functions satisfying η(x, x, λ) = 0 and
ψ(x, x, λ) = 0 for each x ∈ X,λ ∈ Λ. And let H : L(X,Y ) → L(X,Y ) be
a continuous single-valued mapping. Denoted by 〈z, x〉 the value of a linear
operator z ∈ L(X ;Y ) at x ∈ X , we always assume that 〈·, ·〉 is continuous.

For γ ∈ Γ, λ ∈ Λ, µ ∈M consider the following parametric generalized vector
mixed quasivariational inequality problem (in short, (QVIP)).

(QVIP) Find x̄ ∈ K(x̄, γ) and z̄ ∈ T (x̄, µ) such that

〈H(z̄), η(y, x̄, λ)〉+ ψ(y, x̄, λ) ⊆ −C, ∀y ∈ K(x̄, γ).

For each γ ∈ Γ, λ ∈ Λ, µ ∈ M we let E(γ) := {x ∈ X |x ∈ K(x, γ)} and
Σ : Γ×Λ×M → 2X be a set-valued mapping such that Σ(γ, λ, µ) is the solution
set of (QVIP).

Throughout the paper we assume that Σ(γ, λ, µ) 6= ∅ for each (γ, λ, µ) in
the neighborhood (γ0, λ0, µ0) ∈ Γ× Λ×M .

The structure of our paper is as follows. In the first part of this article,
we introduce the model parametric generalized vector mixed quasivariational
inequality problem. In Section 2, we recall definitions for later uses and dis-
cuss the continuity of parametric gap function. In Section 3, we investigate
the inner-openness, the lower semicontinuity and the Hausdorff lower semicon-
tinuity of the solution set for (QVIP). Moreover, we also establish condition
(Hh(γ0, λ0, µ0)) is a sufficient and necessary condition for the Hausdorff lower
semicontinuity, the continuity and Hausdorff continuity of the solution set for
this problem in Hausdorff topological vector spaces with the objective space
being infinite dimensional.
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2. Preliminaries

In this section, we recall some basic definitions and their some proper-
ties in [2, 9, 12]. Let X and Z be Hausdorff topological vector spaces, and
G : X → 2Z be a multifunction. G is said to be lower semicontinuous (lsc) at
x0 if G(x0) ∩ U 6= ∅ for some open set U ⊆ Z implies the existence of a neigh-
borhood N of x0 such that G(x) ∩ U 6= ∅, ∀x ∈ N . An equivalent formulation
is that: G is lsc at x0 if ∀xα → x0, ∀z0 ∈ G(x0), ∃zα ∈ G(xα), zα → z0. G is
called upper semicontinuous (usc) at x0 if for each open set U ⊇ G(x0), there is
a neighborhoodN of x0 such that U ⊇ G(N). G is called Hausdorff upper semi-
continuous (H-usc in short; Hausdorff lower semicontinuous, H-lsc, respectively)
at x0 if for each neighborhood B of the origin in Z, there exists a neighborhood
N of x0 such that, G(x) ⊆ G(x0)+B, ∀x ∈ N (G(x0) ⊆ G(x)+B, ∀x ∈ N). G
is called continuous at x0 if it is both lsc and usc at x0 and to be H-continuous
at x0 if it is both H-lsc and H-usc at x0. G is called closed at x0 if for each
net {(xα, zα)} ⊆ graphG := {(x, z) | z ∈ G(x)}, (xα, zα) → (x0, z0), z0 must
belong to G(x0).

Next, we recall a new limit in [23], the inferior open limit: Liminfox→x0
G(x)

:= {z ∈ Z : there are open neighborhoods U of x0 and V of z such that V ⊆
G(x) for all x ∈ U, x 6= x0}. G is said that inner-open at x0 if liminfox→x0

G(x)
⊇ G(x0). From the condition (3) of Lemma 2.1 in [23], we deduce that

liminfox→x0
G(x) =

[

lim sup
x→x0

Gc(x)
]c
,

where Gc(x) = Z \G(x).

Lemma 2.1 ([9, 12]). Let X and Z be two Hausdorff topological vector spaces

and G : X → 2Z be a multifunction.

(i) If G is usc at x0, then G is H-usc at x0. Conversely if G is H-usc at

x0 and if G(x0) is compact, then G is usc at x0;
(ii) If G is H-lsc at x0 then G is lsc at x0. The converse is true if G(x0)

is compact;
(iii) If Z is compact and G is closed at x0, then G is usc at x0;
(iv) If G is usc at x0 and G(x0) is closed, then G is closed at x0;
(v) If G has compact values, then G is usc at x0 if and only if, for each

net {xα} ⊆ X which converges to x0 and for each net {yα} ⊆ G(xα),
there are y ∈ G(x) and a subnet {yβ} of {yα} such that yβ → y.

Lemma 2.2 ([14]). For any fixed each e ∈ intC, y ∈ Y, r ∈ R and the nonlinear

scalarization function ξe : Y → R defined by ξe(y) := min{r ∈ R : y ∈ re−C}:

(i) ξe is a continuous and convex function in Y ;
(ii) ξe(y) ≤ r ⇔ y ∈ re − C;
(iii) ξe(y) > r ⇔ y 6∈ re − C.

Now we suppose that K(x, γ) and T (x, µ) are compact sets for any (x, γ) ∈
X × Λ and (x, µ) ∈ X ×M . We define function h : X × Γ × Λ ×M → R as
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follows

h(x, γ, λ, µ) = max
z∈T (x,µ)

max
y∈K(x,γ)

ξe(〈H(z), η(y, x, λ)〉 + ψ(y, x, λ)).

Since K(x, γ) and T (x, µ) are compact sets, h(x, γ, λ, µ) is well-defined.

Lemma 2.3. (i) h(x, γ, λ, µ) ≥ 0 for all x ∈ E(γ);
(ii) h(x0, γ0, λ0, µ0) = 0 if and only if x0 ∈ Σ(γ0, λ0, µ0).

Proof. We define a function f : X × L(X,Y ) → R as follows

f(x, z) = max
y∈K(x,γ)

ξe(〈H(z), η(y, x, λ)〉 + ψ(y, x, λ)), x ∈ E(γ), z ∈ T (x, µ).

(i) It is easy to see that f(x, z) ≥ 0. Suppose to the contrary that there
exist x0 ∈ E(γ) and z0 ∈ T (x0, µ) such that f(x0, z0) < 0, then

0 > f(x0, z0) = max
y∈K(x0,γ)

ξe(〈H(z0), η(y, x0, λ)〉+ ψ(y, x0, λ))

≥ ξe(〈H(z0), η(y, x0, λ)〉+ ψ(y, x0, λ)), ∀y ∈ K(x0, γ).

When y = x0, we have

ξe(〈H(z0), η(x0, x0, λ)〉+ ψ(x0, x0, λ))

= ξe(0)

= min{r ∈ R : 0 ∈ re− C}

= min{r ∈ R : −re ∈ −C}

= min{r ∈ R : r ≥ 0} = 0, e ∈ intC,

which is a contradiction. Hence,

h(x, γ, λ, µ) = max
z∈T (x,µ)

max
y∈K(x,γ)

ξe(〈H(z), η(y, x, λ)〉 + ψ(y, x, λ)) ≥ 0.

(ii) Since H, η, ψ and ξe are continuous, h(x0, γ0, λ0, µ0) = 0 if and only if
there exists z0 ∈ T (x0, µ0) such that

max
y∈K(x0,γ0)

ξe(〈H(z0), η(y, x0, λ0)〉+ ψ(y, x0, λ0)) = 0, x0 ∈ E(γ0),

if and only if, for any y ∈ K(x0, γ0)

ξe(〈H(z0), η(y, x0, λ0)〉+ ψ(y, x0, λ0)) ≤ 0.

By Lemma 2.2(ii), if and only if, for any y ∈ K(x0, γ0)

〈H(z0), η(y, x0, λ0)〉+ ψ(y, x0, λ0) ⊆ −C,

i.e., x0 ∈ Σ(γ0, λ0, µ0). This completes the proof. �

We may call the function h as a parametric gap function for (QVIP) if the
properties of Lemma 2.3 are satisfied.
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Example 2.4. Let H be an identity mapping, X = R, Y = R
2, Γ = Λ =M =

[0, 1], C = R
2
+, K(x, γ) = [0, 1], T (x, γ) = [ 12 , 3γ

2x2+x4] and η(y, x, γ) = x−y,
ψ(y, x, γ) = 0. Now we consider the problem (QVIP), finding x ∈ K(x, γ) and
z ∈ T (x, γ) such that

〈H(z), η(y, x, γ)〉+ ψ(y, x, γ) = (
1

2
(x− y), (3γ2x2 + x4)(x − y)) ⊆ −R

2
+.

It follows from a direct computation Σ(γ, λ, µ) = {0} for all γ ∈ [0, 1]. Now
we show that h is a parametric gap function of (QVIP). Indeed, we taking
e = (1, 1) ∈ intR2

+, we have

h(x, γ, λ, µ) = max
y∈K(x,γ)

max
1≤i≤2

[〈T (x, γ), η(y, x, γ)〉+ ψ(y, x, γ)]i

= max
y∈K(x,γ)

((3γ2x2 + x4)(x − y))

=

{

0 if x = 0,

γ2x3 + x5 if x ∈ (0, 1].

Hence, h is a parametric gap function of (QVIP).

The following Lemma 2.5 gives sufficient condition for the parametric gap
function h to be continuous.

Lemma 2.5. Assume for problem (QVIP) that

(i) K is continuous with compact values in X × Γ;
(ii) T is continuous with compact values in X ×M.

Then h is continuous in X × Γ× Λ×M .

Proof. First we prove that h is lower semicontinuous in X×Γ×Λ×M . Indeed,
we let a ∈ R. Suppose that {(xα, γα, λα, µα)} ⊆ X × Γ× Λ×M satisfying

h(xα, γα, λα, µα) ≤ a, ∀α

and

(xα, γα, λα, µα) → (x0, γ0, λ0, µ0) as α→ ∞.

It follows that

h(xα, γα, λα, µα) = max
z∈T (xα,µα)

max
y∈K(xα,γα)

ξe(〈H(z), η(y, xα, λα)〉+ ψ(y, xα, λα))

≤ a

and so

max
y∈K(xα,γα)

ξe(〈H(z), η(y, xα, λα)〉+ ψ(y, xα, λα)) ≤ a, ∀z ∈ T (xα, µα).

Since T is lower semincontinuous at (x0, µ0), for any z0 ∈ T (x0, µ0), there
exists zα ∈ T (xα, µα) such that zα → z0. Since zα ∈ T (xα, µα), we have

max
y∈K(xα,γα)

ξe(〈H(zα), η(y, xα, λα)〉+ ψ(y, xα, λα)) ≤ a.(1)
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Since K is lower semincontinuous at (x0, γ0), for any y0 ∈ K(x0, γ0), there
exists yα ∈ K(xα, γα) such that yα → y0. Since yα ∈ K(xα, γα), it follows
from (1) that

ξe(〈H(zα), η(yα, xα, λα)〉+ ψ(yα, xα, λα)) ≤ a.(2)

From the continuity of H, η, ψ and ξe. Take the limit in (2), we have

ξe(〈H(z0), η(y0, x0, λ0)〉 + ψ(y0, x0, λ0)) ≤ a.(3)

Since y ∈ K(x0, γ0) and z ∈ T (x0, µ0) are arbitrary, it follows from (3) that

h(x0, γ0, λ0, µ0) = max
z∈T (x0,µ0)

max
y∈K(x0,γ0)

ξe(〈H(z), η(y, x0, λ0)〉+ ψ(y, x0, λ0))

≤ a.

This proves that, for a ∈ R, the level set {(x, γ, λ, µ) |h(x, γ, λ, µ) ≤ a} is
closed. Hence, h is lower semicontinuous in X × Γ× Λ×M .

Next, we only prove that h is upper semicontinuous in X × Γ × Λ × M .
Indeed, let a ∈ R. Suppose that {(xα, γα, λα, µα)} ⊆ X ×Γ×Λ×M satisfying

h(xα, γα, λα, µα) ≥ a, ∀α

and

(xα, γα, λα, µα) → (x0, γ0, λ0, µ0) as α→ ∞.

It follows that

h(xα, γα, λα, µα) = max
z∈T (xα,µα)

max
y∈K(xα,γα)

ξe(〈H(z), η(y, xα, λα)〉+ ψ(y, xα, λα))

≥ a.

Now, we define the function f : X × L(X,Y ) → R by

f(x, z) = max
y∈K(x,γ)

ξe(〈H(z), η(y, x, λ)〉 + ψ(y, x, λ)), x ∈ E(γ).

Since ξe is continuous in X and K is continuous with compact values in
X × Γ, by Proposition 19 in Section 1 of Chapter 3 [9], we can deduce that
f(x, z) is a continuous function. Thus, from the compactness of T (xα, µα),
there exists zα ∈ T (xα, µα) such that

h(xα, γα, λα, µα) = max
z∈T (xα,µα)

max
y∈K(xα,γα)

ξe(〈H(z), η(y, xα, λα)〉+ ψ(y, xα, λα))

= f(xα, zα)

= max
y∈K(xα,γα)

ξe(〈H(zα), η(y, xα, λα)〉+ ψ(y, xα, λα)) ≥ a.

From the compactness of K(xα, γα), there exists yα ∈ K(xα, γα) such that

ξe(〈H(zα), η(yα, xα, λα)〉+ ψ(yα, xα, λα))

= max
y∈K(xα,λα)

ξe(〈H(zα), η(y, xα, λα)〉+ ψ(y, xα, λα)) ≥ a.(4)

Since T is upper semicontinuous with compact values in X × M and K is
upper semicontinuous with compact values in X×Γ, there exist z0 ∈ T (x0, µ0),
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y0 ∈ K(x0, γ0) such that zα → z0, yα → y0 (can take subnets {zβ} of {zα} and
{yβ} of {yα} if necessary) as α → ∞. From the continuity of H, η, ψ and ξe.
Take the limit in (4), we have

ξe(〈H(z0), η(y0, x0, λ0)〉 + ψ(y0, x0, λ0)) ≥ a.

And so, for any y ∈ K(x0, γ0) and z ∈ T (x0, µ0), we have

h(x0, γ0, λ0, µ0)) = max
z∈T (x0,µ0)

max
y∈K(x0,γ0)

ξe(〈H(z), η(y, x0, λ0)〉 +ψ(y, x0, λ0))

≥ a.

This proves that, for a ∈ R, the level set {(x, γ, λ, µ) |h(x, γ, λ, µ) ≥ a} is
closed. Hence, h is upper semicontinuous in X × Γ× Λ×M . �

Remark 2.6. Note that, our the parametric gap function h(x, γ, λ, µ) is different
from the parametric gap functions in [13, 19, 30, 38]. Thus, the continuity of
the parametric gap function h(x, γ, λ, µ) in Lemma 2.5 is new.

Lemma 2.7. Assume for problem (QVIP) that

(i) E(γ0) is a compact set;
(ii) K(·, γ0) is lower semicontinuous in X for all γ0 ∈ Γ;
(iii) T (·, µ0) is upper semicontinuous with compact values in X for all µ0 ∈

M .

Then Σ(γ0, λ0, µ0) is a closed set. Moreover, Σ(γ0, λ0, µ0) is a compact set.

Proof. Take any net {xα} ⊂ Σ(γ0, λ0, µ0) such that xα → x0 and x0 ∈ E(γ0)
by E(γ0) is a compact set. We need to prove that x0 ∈ Σ(γ0, λ0, µ0). If
x0 6∈ Σ(γ0, λ0, µ0), then ∀z0 ∈ T (x0, µ0), ∃y0 ∈ K(x0, γ0) such that

〈H(z0), η(y0, x0, λ0)〉+ ψ(y0, x0, λ0) 6⊆ −C.(5)

The lower semicontinuity of K(·, γ0), there is yα ∈ K(xα, γ0) such that {yα} →
y0 for each α.

Since xα ∈ Σ(γ0, λ0, µ0), there exists zα ∈ T (xα, µ0) such that

〈H(zα), η(yα, xα, λ0)〉+ ψ(yα, xα, λ0) ⊆ −C.(6)

Since T (·, µ0) is upper semicontinuous and with compact values in X ×M ,
one has z0 ∈ T (x0, µ0) such that zα → z0 (can take a subnet if necessary) and
since H , η are continuous. We have,

〈H(zα), η(yα, xα, λ0)〉 → 〈H(z0), η(y0, x0, λ0)〉.

It follows from the continuity of ψ that

〈H(zα), η(yα, xα, λ0)〉+ ψ(yα, xα, λ0) → 〈H(z0), η(y0, x0, λ0)〉+ ψ(y0, x0, λ0)

and so

〈H(z0), η(y0, x0, λ0)〉+ ψ(y0, x0, λ0) ⊆ −C.(7)
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We see a contradiction between (5) and (7), and so we have x0 ∈ Σ(γ0, λ0, µ0).
Thus, Σ(γ0, λ0, µ0) is closed. Moreover, it follows from Σ(γ0, λ0, µ0) ⊂ E(γ0)
and by compactness of E(γ0) that Σ(γ0, λ0, µ0) is a compact set. �

3. Main results

In this section, we discuss the inner-openness, lower semicontinuity and
Hausdorff lower semicontinuity of the solution set for parametric generalized
vector mixed quasivariational inequality problem. Moreover, we establish con-
dition (Hh(γ0, λ0, µ0)) is a sufficient and necessary condition for the Hausdorff
lower semicontinuity, continuity and Hausdorff continuity for the solution set
of this problem.

Theorem 3.1. Assume for problem (QVIP) that

(i) E is inner-open in Γ,
(ii) K is upper semicontinuous with compact values in X × Γ,
(iii) T is lower semicontinuous in X ×M .

Then Σ is inner-open in Γ× Λ×M .

Proof. Suppose to the contrary that Σ is not inner-open in Γ× Λ×M . Then,
∃x0 ∈ Σ(γ0, λ0, µ0), x0 6∈ liminfoγ→γ0,λ→λ0,µ→µ0

Σ(γ, λ, µ). By

liminfoγ→γ0,λ→λ0,µ→µ0
Σ(γ, λ, µ) =

[

lim sup
γ→γ0,λ→λ0,µ→µ0

(Σ)c(γ, λ, µ)
]c
,

we have x0 ∈ lim supγ→γ0,λ→λ0,µ→µ0
(Σ)c(γ, λ, µ). Therefore, there exist nets

{γα}, γα 6= γ0 converging to γ0, {λα}, λα 6= λ0 converging to λ0, {µα}, µα 6= µ0

converging to µ0 and net {xα} with xα ∈ (Σ)c(γα, λα, µα) converging x0. Since
E is inner-open at γ0 and x0 ∈ E(γ0) which implies x0 ∈ liminfoγ→γ0

E(γ).
There exist neighborhoods U of γ0, V of x0 such that x0 ∈ V ⊆ E(γ) for
all γ ∈ U , γ 6= γ0. Since (xα, γα, λα, µα) → (x0, γ0, λ0, µ0) and by the
above contradiction assumption, there must be a subnet {(xβ , γβ , λβ , µβ)}
of net {(xα, γα, λα, µα)} such that for all β, xβ 6∈ Σ(γβ , λβ , µβ), i.e., ∀zβ ∈
T (xβ, µα), ∃yβ ∈ K(xβ , γβ) such that

〈H(zβ), η(yβ , xβ , λβ)〉+ ψ(yβ, xβ , λβ) 6⊆ −C.(8)

As K is usc in X×Γ and K(x0, γ0) is compact, one has y0 ∈ K(x0, γ0) such
that yβ → y0 (taking a subnet if necessary). By the lower semicontinuity of T
at (x0, µ0), one has z

′

β ∈ T (xβ , µβ) such that z′β → z0. Since H , η and 〈·, ·〉 are
continuous. We have,

〈H(z′β), η(yβ , x
′

β , λβ)〉 → 〈H(z0), η(y0, x0, λ0)〉.

It follows from the continuity of ψ that

〈H(z′β), η(yβ , x
′

β , λβ)〉+ ψ(yβ , x
′

β , λβ) → 〈H(z0), η(y0, x0, λ0)〉+ ψ(y0, x0, λ0).

By (8), we have

〈H(z0), η(y0, x0, λ0)〉+ ψ(y0, x0, λ0) 6⊆ −C,
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which is impossible since x0 ∈ Σ(γ0, λ0, µ0). Therefore, Σ is inner-open in
Γ× Λ×M . �

The following example shows that the inner-openness of E is essential.

Example 3.2. Let X = Y = [0, 1], Λ = Γ = M = [0, 1], C = R−γ0 = 0, H is
an identity mapping and

T (x, γ) = [0, e1+cos2 γ ],

η(x, y, γ) = {1 + 2γ},

ψ(x, y, γ) = {eγ},

f(x, y, γ) = {
1

e2+γ
},

K(x, γ) =

{

(0, 1] if γ ∈ (0, 1],

[−1, 0] if γ = 0.

We have E(γ) = (0, 1] for all γ ∈ (0, 1] and E(0) = [−1, 0]. It is not hard to
see that the assumptions (ii) and (iii) in Theorem 3.1 are satisfied. But E is
not inner-open at 0. Hence, Σ also not inner-open at (0, 0, 0). Thus, Theorem
3.1 cannot be applied. In fact, Σ(0, 0, 0) = [−1, 0] and Σ(γ, λ, µ) = (0, 1] for all
γ ∈ (0, 1].

The following example shows that all assumptions of Theorem 3.1 are ful-
filled.

Example 3.3. Let X = Y = R, Λ = Γ = M = [0, 1], C = R−γ0 = 0, H is an
identity mapping and

f(x, y, γ) = [
1

2
, 1], K(x, γ) = (0, 1),

T (x, γ) = [0, 1], η(x, y, γ) = {γ2 + 2γ},

ψ(x, y, γ) = {21+γ}.

We see that the assumptions of Theorem 3.1 are satisfied. And so, Σ is inner-
open at (0, 0, 0). In fact, Σ(γ, λ, µ) = (0, 1) for all γ ∈ [0, 1].

Theorem 3.4. Assume for problem (QVIP) that

(i) E is lower semicontinuous in Γ,
(ii) ∀x0 ∈ K(x0, γ0), ∀(xn, γn, λn, µn) → (x0, γ0, λ0, µ0) and ∃z ∈ T (x0, µ0)

such that

〈H(z), η(y, x0, λ0)〉+ ψ(y, x0, λ0) ⊆ −C, ∀y ∈ K(x0, γ0)

implies that there exists a positive integer n, such that ∃z ∈ T (xn, µn)
satisfying

〈H(z), η(y, xn, λn)〉+ ψ(y, xn, λn) ⊆ −C, ∀y ∈ K(xn, γn).

Then Σ is lower semicontinuous in Γ× Λ ×M .
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Proof. Suppose to the contrary that Σ is not lower semicontinuous at (γ0, λ0,
µ0), i.e., ∃x0 ∈ Σ(γ0, λ0, µ0), ∃(γn, λn, µn) → (γ0, λ0, µ0), ∀x

′

n ∈ Σ(γn, λn, µn),
x′n 6→ x0. Since E is lower semicontinuous at γ0 ∈ Γ, there is a net {xn} with
xn ∈ E(γn), xn → x0. By the above contradiction assumption, without loss
of generality, if xn 6∈ Σ(γn, λn, µn), i.e., ∀zn ∈ T (xn, µn), ∃yn ∈ K(xn, γn) such
that

〈H(zn), η(yn, xn, λn)〉+ ψ(yn, xn, λn) 6⊆ −C.(9)

Since x0 ∈ Σ(γ0, λ0, µ0), ∃z ∈ T (x0, µ0) such that

〈H(z), η(y, x0, λ0)〉+ ψ(y, x0, λ0) ⊆ −C, ∀y ∈ K(x0, γ0).

Since (xn, γn, λn, µn) → (x0, γ0, λ0, µ0) and by the condition (ii), there exists
n, such that ∀z ∈ T (xn, µn)

〈H(z), η(y, xn, λn)〉+ ψ(y, xn, λn) ⊆ −C, ∀y ∈ K(xn, γn),

which contradicts (9). Therefore, Σ is lower semicontinuous in Γ×Λ×M . �

Remark 3.5. In the special case, if Y = R, C = (−∞, 0], Γ = Λ =M , H is an
identity mapping and η(y, x, λ) = y−g(x, λ), ψ(y, x, λ) = 0, where g : X×Λ →
X be a continuous single-valued mapping. Then, the lower semicontinuity
of the solution set in Theorem 3.2 of Khanh-Luu [24] is a particular case of
Theorem 3.4.

The following example shows that the lower semicontinuity of E is essential.

Example 3.6. Let X,Y,Λ,Γ,M, γ0, H,C as in Example 3.3 and let T (x, γ) =

[0, 21+sin2 γ ], η(x, y, γ) = 2 + cos2 γ, ψ(x, y, γ) = 2γ and

K(x, γ) =

{

[−1, 1] if γ = 0,

[−γ − 1, 0] otherwise.

We have E(0) = [−1, 1], E(γ) = [−γ − 1, 0], ∀γ ∈ (0, 1]. Hence K is usc
and the conditions (ii) and (iii) of Theorem 3.4 are easily seen to be fulfilled.
But Σ is not upper semicontinuous at (0, 0, 0). The reason is that E is not
lower semicontinuous at 0. In fact, Σ(0, 0, 0) = [−1, 1] and Σ(γ, λ, µ) = [−γ −
1, 0], ∀γ ∈ (0, 1].

Theorem 3.7. Impose the assumption of Theorem 3.4 and the following ad-

ditional conditions:

(iii) K(., γ0) is lower semicontinuous in X and E(γ0) is compact;
(iv) T (., µ0) is upper semicontinuous with compact values in X.

Then Σ is Hausdorff lower semicontinuous in Γ× Λ×M .

Proof. We first prove that Σ(γ0, λ0, µ0) is closed. Indeed, we let

xn ∈ Σ(γ0, λ0, µ0)
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such that xn → x0. If x0 6∈ Σ(γ0, λ0, µ0), then ∀z0 ∈ T (x0, µ0), ∃y0 ∈ K(x0, γ0)
such that

〈H(z0), η(y0, x0, λ0)〉+ ψ(y0, x0, λ0) 6⊆ −C.(10)

By the lower semicontinuity of K(., γ0) at x0, one has yn ∈ K(xn, λ0) such that
yn → y0. By the lower semicontinuity of T at (x0, µ0), one has zn ∈ T (xn, µ0)
such that zn → z0. Since xn ∈ Σ(γ0, λ0, µ0), we have

〈H(zn), η(yn, xn, λ0)〉+ ψ(yn, xn, λ0) ⊆ −C.(11)

Since (xn, zn, yn) → (x0, z0, y0) and from the continuity of H, η, ψ and (11)
yields that

〈H(z0), η(y0, x0, λ0)〉+ ψ(y0, x0, λ0) ⊆ −C,(12)

we see a contradiction between (10) and (12). Therefore, Σ(γ0, λ0, µ0) is a
closed set.

On the other hand, since Σ(γ0, λ0, µ0) ⊆ E(γ0) is compact by E(γ0) com-
pact. Since Σ is lower semicontinuous in Γ×Λ×M and Σ(γ0, λ0, µ0) is compact.
Hence by Lemma 2.1(ii), it follows that Σ is Hausdorff lower semicontinuous in
Γ× Λ×M . And so we complete the proof. �

The following example shows that the compactness of E is essential.

Example 3.8. Let X = Y = R
2, Λ = Γ =M = [0, 1], C = R−γ0 = 0, H is an

identity mapping and

x = (x1, x2) ∈ R
2, K(x, λ) = {(x1, λx

2
1)}.

T (x, γ) = [0, e2+2γ ], η(x, y, γ) = {γ2},

f(x, y, γ) = {
1

e2+γ
}, ψ(x, y, γ) = {2γ

2

}.

We have E(0) = {x ∈ R
2 |x2 = 0} and E(γ) = {x ∈ R

2 |x2 = γx21)}, ∀γ ∈
(0, 1]. We shows that the assumptions of Theorem 3.7 are satisfied, but the
compactness of E(0) is not satisfied. Direct computations give Σ(0, 0, 0) =
{(x1, x2) ∈ R

2 |x2 = 0} and then Σ(γ, λ, µ) = {x ∈ R
2 |x2 = γx21)}, ∀γ ∈ (0, 1]

is not Hausdorff lower semicontinuous at (0, 0, 0).

The following example shows that all the assumptions of Theorem 3.7 are
satisfied.

Example 3.9. Let X = Y = R, Λ = Γ = M = [0, 1], C = R−γ0 = 0, H is an
identity mapping and

T (x, γ) = {1},

K(x, λ) = [0, 1], η(x, y, γ) = ψ(x, y, γ) = {γ2 + 1},

f(x, y, λ) = {
1

2γ2+γ+2
}.
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We also that all the assumptions of Theorem 3.7 are satisfied. So, Σ is Hausdorff
lower semicontinuous at (0, 0, 0). In fact, Σ(γ, λ, µ) = [0, 1] for all γ ∈ [0, 1].

Next, we establish condition (Hh(γ0, λ0, µ0)) is a sufficient and necessary
condition for the Hausdorff lower semicontinuity, continuity and Hausdorff con-
tinuity of the solution set for parametric generalized vector mixed quasivaria-
tional inequality problem.

Motivated by the hypothesis (H1) in [25, 37], (Hg) in [13, 30], (H ′

g) in
[38] and the assumption (Hh(γ0, µ0)) in [19], by virtue of the parametric gap
function h. Now, we introduce the following key assumption.

(Hh(γ0, λ0, µ0)) Given (γ0, λ0, µ0) ∈ Γ× Λ×M . For any open neighbor-
hood U of the origin inX , there exist α > 0 and a neighborhood V (γ0, λ0, µ0) of
(γ0, λ0, µ0) such that for all (γ, λ, µ) ∈ V (γ0, λ0, µ0) and x ∈ E(γ)\(Σ(γ, λ, µ)+
U), one has h(x, γ, λ, µ) ≥ α.

Remark 3.10. Zhao [37], Li and Chen [30] remarked that the above hypothesis
(Hh(γ0, λ0, µ0)) is characterized by a common theme used in mathematical
analysis. Such a theme interprets a proposition associated with a set, in terms
of other propositions associated with the complement set. Instead of imposing
restrictions on the solution set, the hypothesis (Hh(γ0, λ0, µ0)) lays a condition
on the behavior of the parametric gap function on the complement of the
solution set.

Geometrically, the hypothesis (Hh(γ0, λ0, µ0)) means that, given a small
open neighborhood U of the origin in X , we can find a small positive num-
ber α > 0 and a neighborhood V (γ0, λ0, µ0) of (γ0, λ0, µ0), such that for all
(γ, λ, µ) in the neighborhood of (γ0, λ0, µ0), if a feasible point x is not in the
set Σ(γ, λ, µ) + U , then a “gap” by an amount of at least α will be yielded.

The following Lemma 3.11 is modified from Proposition 3.1 in Kien [25].

Lemma 3.11. Suppose that all conditions in Lemma 2.5 are satisfied. For any

open neighborhood U of the origin in X, let

Φ(γ, λ, µ) := inf
x∈E(γ)\(Σ(γ,λ,µ)+U)

h(x, γ, λ, µ).

Then (Hh(γ0, λ0, µ0)) holds if and only if for any open neighborhood U of the

origin in X one has

lim inf
γ→γ0,λ→λ0,µ→µ0

Φ(γ, λ, µ) > 0.

Proof. If (Hh(γ0, λ0, µ0)) holds, then for any open neighborhood U of the origin
in X , there exist α > 0 and a neighborhood V (γ0, λ0, µ0) of (γ0, λ0, µ0) such
that for all (γ, λ, µ) ∈ V (γ0, λ0, µ0) and x ∈ E(γ) \ (Σ(γ, λ, µ) + U), one has
h(x, γ, λ, µ) ≥ α.

This implies that Φ(γ, λ, µ) ≥ α, for every (γ, λ, µ) ∈ V (γ0, λ0, µ0), hence

lim inf
γ→γ0,λ→λ0,µ→µ0

Φ(γ, λ, µ) ≥ α > 0.
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Conversely, for any open neighborhood U of the origin in X ,

ω = lim inf
γ→γ0,λ→λ0,µ→µ0

Φ(γ, λ, µ) > 0

then there exists a neighborhood V (γ0, λ0, µ0) of (γ0, λ0, µ0) such that

Φ(γ, λ, µ) ≥ α > 0

for all (γ, λ, µ) ∈ V (γ0, λ0, µ0), where α := 1
2ω. Hence, for any x ∈ E(γ) \

(Σ(γ, λ, µ) + U), we have

h(x, γ, λ, µ) ≥ α > 0

which shows that (Hh(γ0, λ0, µ0)) holds. �

Remark 3.12 ([9, 12]). (i) Let a set A ⊂ X , A is said to be balanced if λA ⊂ A

for every λ ∈ R, with |λ| ≤ 1;
(ii) For each neighborhood U of the origin in X there exists a balanced open

neighborhood B of the origin in X such that B +B +B ⊂ U .

Theorem 3.13. Suppose that condition (Hh(γ0, λ0, µ0)) holds and

(i) E is lower semicontinuous with compact values in Γ;
(ii) K is continuous with compact values in X × Γ;
(iii) T is continuous with compact values in X ×M .

Then Σ is Hausdorff lower semicontinuous in Γ× Λ×M .

Proof. Suppose to the contrary that (Hh(γ0, λ0, µ0)) holds but Σ is not Haus-
dorff lower semicontinuous at (γ0, λ0, µ0). Then there exist a neighborhood
U of the origin in X , a net {(γα, λα, µα)} ⊂ Γ × Λ ×M with (γα, λα, µα) →
(γ0, λ0, µ0) and a net {xα} such that

xα ∈ Σ(γ0, λ0, µ0) \ (Σ(γα, λα, µα) + U).(13)

By the compactness of Σ, we have can assume that xα → x0 ∈ Σ(γ0, λ0, µ0).
Since Remark 3.12, there exists a balanced open neighborhood B0 of the origin
in X such that B0 + B0 + B0 ⊂ U . Hence, for any given ε > 0, (x0 + εB0) ∩
E(γ0) 6= ∅. By E is lower semicontinuous at γ0 ∈ Γ, there exists some k1 such
that (x0 + εB0) ∩ E(γk) 6= ∅ for all k ≥ k1.

For ε ∈ (0, 1], suppose that ξk ∈ (x0 + εB0) ∩ E(γk). We claim that ξk 6∈
Σ(γk, λk, µk)+B0. Otherwise, there exists δk ∈ Σ(γk, λk, µk) such that ξk−δk ∈
B0. Without loss of generality, we may assume that xk − x0 ∈ B0 whenever
kis sufficiently large. Consequently, we get

xk − δk = (xk − x0) + (x0 − ξk) + (ξk − δk) ∈ B0 + (−εB0) +B0

⊂ B0 +B0 +B0 ⊂ U.

This implies that xk ∈ Σ(γk, λk, µk) + U , contrary to (13). Thus,

ξk 6∈ Σ(γk, λk, µk) +B0.
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By the assumption (Hh(γ0, λ0, µ0)), there exists θ > 0 such that h(ξk, γk, λk,
µk) ≥ θ. By Lemma 2.5, h is upper semicontinuous in X ×Γ×Λ×M . So, for
any σ > 0 and for k sufficiently large, we have

h(ξk, γk, λk, µk)− σ ≤ h(x0, γ0, λ0, µ0).

We can take σ such that θ − σ > 0. Thus,

h(x0, γ0, λ0, µ0) ≥ h(ξk, γk, λk, µk)− σ ≥ θ − σ > 0

and so

h(x0, γ0, λ0, µ0) = max
z∈T (x0,µ0)

max
y∈K(x0,γ0)

ξe(〈H(z), η(y, x0, λ0)〉+ ψ(y, x0, λ0))

> 0.

So, there exist z ∈ T (x0, µ0) and y ∈ K(x0, γ0) such that

ξe(〈H(z), η(y, x0, λ0)〉+ ψ(y, x0, λ0)) > 0.

By Lemma 2.2(iii), we have

〈H(z), η(y, x0, λ0)〉+ ψ(y, x0, λ0) 6∈ −C,

which contradicts with x0 ∈ Σ(γ0, λ0, µ0). Therefore, Σ is Hausdorff lower
semicontinuous in Γ× Λ×M . �

Theorem 3.14. Suppose that

(i) E is continuous with compact values in Γ;
(ii) K is continuous with compact values in X × Γ;
(iii) T is continuous with compact values in X ×M .

Then Σ is Hausdorff lower semicontinuous in Γ×Λ×M if and only if (Hh(γ0,
λ0, µ0)) holds.

Proof. From Theorem 3.13, we only need to prove the necessity. Suppose
to the contrary that Σ is Hausdorff lower semicontinuous in Γ × Λ ×M but
(Hh(γ0, λ0, µ0)) does not hold. By Lemma 3.11, there exists a neighborhood
U of the origin in X , such that

lim inf
γ→γ0,λ→λ0,µ→µ0

Φ(γ, λ, µ) = 0.

Then there exists a net {(γα, λα, µα)} ⊂ Γ × Λ × M with (γα, λα, µα) →
(γ0, λ0, µ0) such that

lim
α→∞

Φ(γα, λα, µα) = lim
α→∞

inf
x∈E(γα)\(Σ(γα,λα,µα)+U)

h(x, γα, λα, µα) = 0.(14)

By E(γα)\(Σ(γα, λα, µα)+U) is a compact set and h is continuous from Lemma
2.5, there exists xα ∈ E(γα) \ (Σ(γα, λα, µα) + U) satisfying Φ(γα, λα, µα) =
h(xα, γα, λα, µα). Clearly, (14) implies

lim
α→∞

h(xα, γα, λα, µα) = 0.

Since E is upper semicontinuous with compact values in Γ, we can assume that
xα → x0 with x0 ∈ E(γ0). By the continuity of h, we have h(x0, γ0, λ0, µ0) =
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0 and so x0 ∈ Σ(γ0, λ0, µ0). For any δ ∈ Σ(γ0, λ0, µ0), since Σ is H-lsc in
Γ×Λ×M , we can find a net {δα} ⊂ Σ(γα, λα, µα) such that δα → δ, ∀α. Since
xα ∈ E(γα) \ (Σ(γα, λα, µα) +U), we know that δα − xα 6⊂ U . Letting α→ ∞
we have δ − x0 6⊂ U , ∀δ ∈ Σ(γ0, λ0, µ0). Since x0 ∈ Σ(γ0, λ0, µ0), we have a
contradicts. Thus, (Hh(γ0, λ0, µ0)) holds. �

The following example shows that (Hh(γ0, λ0, µ0)) in Theorem 3.14 is essen-
tial

Example 3.15. Let Λ,Γ,M, γ0, H as in Example 3.2 and X = [−1, 1], Y = R,
C = R+, K(x, γ) = [−1, 1], T (x, µ) = {1}, η(y, x, γ) = (x − y)(γ + x2),
ψ(y, x, γ) = 0. Now we consider the problem (QVIP) of finding x ∈ K(x, γ)
and z ∈ T (x, µ) such that

〈H(z), η(y, x, γ)〉+ ψ(y, x, γ) = (γ + x2)(x− y) ⊆ −R+.

It follows from a direct computation

Σ(γ, λ, µ) =

{

{−1, 0} if γ = 0,

{−1} otherwise.

Hence Σ is not H-lsc in Γ×Λ×M . Now we show that condition (Hh(γ0, λ0, µ0))
does not hold at (0, 0, 0). We taking e = 1 ∈ intR+, we have

h(x, γ, λ, µ) = max
z∈T (x,µ)

max
y∈K(x,γ)

ξe(〈H(z), η(y, x, λ)〉 + ψ(y, x, λ))

= max
y∈K(x,γ)

((γ + x2)(x− y))

=(γ + x2)(x+ 1).

We have h is a parametric gap function of (QVIP). For given (γ0, λ0, µ0) ∈
Γ × Λ ×M , for any open neighborhood Uε(0) = (−ε, ε), choose ε such that
0 < ε < 1. For any α > 0 taking (γβ , λβ , µβ) → (0, 0, 0) with 0 < γβ < α and
xβ = 0 ∈ E(γβ) \ (Σ(γβ , λβ , µβ) +Uε(0)). We have h(xβ , γβ , λβ , µβ) = γβ < α.
Hence, (Hh(γ0, λ0, µ0)) does not hold at (0, 0, 0).

The following example shows that all the assumptions of Theorem 3.14 are
satisfied.

Example 3.16. Let X,Y,Λ,Γ,M, γ0, H as in Example 3.15 and let C = R+,
K(x, γ) = [0, γ], T (x, µ) = [0, 1], η(y, x, λ) = x − y, ψ(y, x, λ) = 0. Now we
finding x ∈ K(x, γ) and z ∈ T (x, µ) such that

〈H(z), η(y, x, λ)〉+ ψ(y, x, λ) = x− y ⊆ −R+.

It follows from a direct computation Σ(γ, λ, µ) = {0} for all γ ∈ [0, 1]. Hence,
Σ is H-lsc in Γ×Λ×M . Now we check conditions of (Hh(γ0, λ0, µ0)), we taking
e = 1 ∈ intR+, then

h(x, γ, λ, µ) = max
y∈K(x,γ)

max[〈T (x, γ), η(y, x, γ)〉+ ψ(y, x, γ)]
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= max
y∈K(x,γ)

((x− y))

=

{

0 if x = 0

γ if x = γ.

We have h is a parametric gap function of (QVIP). For given (γ0, λ0, µ0) ∈
Γ× Λ×M , for any open neighborhood Uε(0) = (−ε, ε) and 0 < ε ≤ γ, taking
α = ε and the neighborhood Vδ(γ0, λ0, µ0) = [γ0 − ε, γ0 + ε] with 0 < δ <

min{γ0 − ε, 1− γ0}, we have

h(x, γ, λ, µ) = γ ≥ α, ∀(γ, λ, µ) ∈ Vδ(γ0, λ0, µ0), ∀x ∈ E(γ)\(Σ(γ, λ, µ)+Uε(0)).

Hence, the assumption (Hh(γ0, λ0, µ0)) holds.

Theorem 3.17. Suppose that the following conditions are satisfied:

(i) E is continuous with compact values in Λ;
(ii) K is continuous with compact values in X × Γ;
(iii) T is continuous with compact values in X ×M .

Then Σ is both continuous and closed in Γ×Λ×M if and only if (Hh(γ0, λ0, µ0))
holds.

Proof. From Theorem 3.14 and Lemma 2.1(ii), we only need to prove that
Σ is both upper semicontinuous and closed in Γ × Λ × M . First we prove
that Σ is upper semicontinuous in Γ × Λ × M . Indeed, we suppose that Σ
is not upper semicontinuous at (γ0, λ0, µ0), i.e., there is an open subset U
of Σ(γ0, λ0, µ0) such that for all net {(γα, λα, µα)} convergent to (γ0, λ0, µ0),
there is xα ∈ Σ(γα, λα, µα), xα 6∈ U , ∀α. By the upper semicontinuity of E
in Γ and the compactness of E(γ0), one can assume that xα → x0 ∈ E(γ0)
(taking a subnet if necessary). Now we show that x0 ∈ Σγλµ(γ0, λ0, µ0). If
x0 6∈ Σ(γ0, λ0, µ0), then ∀z0 ∈ T (x0, µ0), ∃y0 ∈ K(x0, γ0) such that

〈H(z0), η(y0, x0, λ0)〉+ ψ(y0, x0, λ0) 6⊆ −C.(15)

By the lower semicontinuity of K at (x0, γ0), there exists yα ∈ K(xα, γα) such
that yα → y0. Since xα ∈ Σ(γα, λα, µα), there exists zα ∈ T (xα, µα) such that

〈H(zα), η(yα, xα, λα)〉+ ψ(yα, xα, λα) ⊆ −C.(16)

Since T is upper semicontinuous and with compact values in X ×M , one
has z0 ∈ T (x0, µ0) such that zα → z0 (can take a subnet if necessary) and since
H , η are continuous. We have,

〈H(zα), η(yα, xα, λα)〉 → 〈H(z0), η(y0, x0, λ0)〉.

It follows from the continuity of ψ that

〈H(zα), η(yα, xα, λα)〉+ ψ(yα, xα, λα) → 〈H(z0), η(y0, x0, λ0)〉+ ψ(y0, x0, λ0)

and so

〈H(z0), η(y0, x0, λ0)〉+ ψ(y0, x0, λ0) ⊆ −C.(17)
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We see a contradiction between (15) and (17), and so we have x0 ∈ Σ(γ0, λ0, µ0)
⊆ U , this contradicts to the fact xα 6∈ U , ∀α. Hence, Σ is upper semicontinuous
in Γ× Λ×M .

Now we prove that Σ is closed in Γ× Λ×M . Indeed, we suppose that Σ is
not closed at (γ0, λ0, µ0), i.e., there is a net {(xn, γn, λn, µn)} → (x0, γ0, λ0, µ0)
with xn ∈ Σ(γn, λn, µn) but x0 6∈ Σ(γ0, λ0, µ0). The further argument is the
same as above. And so we have Σ is closed in Γ × Λ ×M . Hence, Σ is both
upper semicontinuous and closed in Γ× Λ×M . �

Corollary 3.18. Suppose that the following conditions are satisfied:

(i) E is continuous with compact values in Λ;
(ii) K is continuous with compact values in X × Γ;
(iii) T is continuous with compact values in X ×M .

Then Σ is both Hausdorff continuous and closed in Γ × Λ ×M if and only if

(Hh(γ0, λ0, µ0)) holds.

Remark 3.19. From Remark 2.6 as above. Theorems 3.13-3.17 and Corollary
3.18 are different from some results in [13, 19, 30, 38]. Moreover, our the
assumption (Hh(γ0, λ0, µ0)) is also different from the assumption (Hg) in [13,
30, 38].
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