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REMARKS ON SEPARATION AXIOMS ON
GENERALIZED TOPOLOGICAL SPACES

Won Keun Min*

Abstract. We introduce to the notions of GT1, GT2, G-regular
and G-normal on a GTS. And we investigate characterizations for
such notions and relationships among GT1, GT2, GT3 and G4.

1. Introduction

In [1], Császár introduced the notions of generalized neighborhood
systems and generalized topological spaces and the notion of continuous
functions on generalized neighborhood systems and generalized topo-
logical spaces. He introduced the notion of product [5] of generalized
topologies and investigated some properties of the product of gener-
alized topologies. In this paper, we introduce to the notions of GT1,
GT2,G-regular and G-normal on a GTS. We investigate properties for
such notions, in particular, the GTS (

∏
k∈J Xk, µ) with the product

µ = Pk∈Jgk is GT2 if and only if each GTS (Xk, gk) is GT2. And we
investigate relationships among GT1, GT2, GT3 and G4.

2. Preliminaries

We recall some notions and notations defined in [1]. Let X be a
nonempty set and g be a collection of subsets of X. Then g is called a
generalized topology (briefly GT) on X iff ∅ ∈ g and Mi ∈ g for i ∈ I 6= ∅
implies ∪i∈IMi ∈ g. We call the pair (X, g) a generalized topological
space (briefly GTS) on X. The elements of g are called g-open sets and
the complements are called g-closed sets. Set gO(X) = {U ⊆ X : U ∈ g}
and gO(x) = {U ∈ g : x ∈ U}. If (X, g) is a GTS and A ⊆ X, then the
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interior of A (denoted by ig(A)) is the union of all G ⊆ A, G ∈ g, and
the closure of A (denoted by cg(A)) is the intersection of all g-closed sets
containing A.

Let g and g
′
be generalized topologies on X and Y , respectively. Then

a function f : (X, g) → (Y, g′) is said to be
(1) (g, g

′
)-continuous [1] if G

′ ∈ g
′
implies that f−1(G

′
) ∈ g;

(2) (g, g
′
)-open [6] if G ∈ g implies that f(G) ∈ g′.

Lemma 2.1. ([4]) Let g be a GT on X and A ⊆ X. Then x ∈ cg(A)
if and only if V ∩A 6= ∅ for every V ∈ gO(x).

Let exp(X) denote the power set of X and let B ⊆ exp(X) satisfy
∅ ∈ B. Then all unions of some elements of B constitute a GT µ(B),
and B is said to be a base [2] for µ(B). Let g be a GT on a nonempty
set X, in general, let Mg denote the union of all elements of g.

Let J be an index set and µk a GT on Xk for k ∈ J . Let
∏

k∈J Xk

the Cartesian product of the sets Xk. We denote by pk the projection
pk :

∏
k∈J Xk → Xk. Let us consider all sets of the form

∏
k∈J Mk

where Mk ∈ µk and, with the exception of a finite number of indices
k, Mk = Mµk

. We denote by B the collection of all these sets. Since
∅ ∈ B, B is a base for a GT µ = µ(B). We call µ = µ(B) the product [4]
of the GT’s µk and denote it by Pk∈Jµk.

Theorem 2.2. ([5]) Let µk a GT on Xk for k ∈ J and the product µ =
Pk∈Jµk a GT on

∏
k∈J Xk. Then the projection pk : (

∏
k∈J Xk, µ) →

(Xk, µk) is (µ, µk)-open.

In general, the projection pk : (
∏

k∈J Xk, µ) → (Xk, µk) is not (µ, µk)-
continuous (See Example 2.5 in [5]).

3. GT1, GT2, G-regular, G-normal

Definition 3.1. Let (X, g) be a GTS. Then X is called a relative
GT1-space (simply, GT1-space) if for x1, x2 ∈ Mg with x1 6= x2, there
exist U, V ∈ g such that x1 ∈ U , x2 /∈ U and x2 ∈ V , x1 /∈ V .

Theorem 3.2. A GTS (X, g) is a GT1-space if and only if for each
x ∈Mg, {x} ∪ (X −Mg) is g-closed.

Proof. Assume that X is GT1. For each z ∈ Mg − {x}, there exists
a g-open Uz such that z ∈ Uz, x /∈ Uz. This implies that Mg − {x} is
g-open. Hence (X −Mg) ∪ {x} is g-closed.
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For the converse, let x1, x2 ∈Mg with x1 6= x2. Then by hypothesis,
(X−Mg)∪{x1} and (X−Mg)∪{x2} are g-closed. Set U = Mg−{x2}
and V = Mg − {x1}. Then U, V are g-open sets and x1 ∈ U , x2 /∈ U
and x2 ∈ V , x1 /∈ V . Hence X is a GT1-space.

Definition 3.3. Let (X, g) be a GTS. Then X is called a relative
GT2-space (simply, GT2-space) if for x1, x2 ∈ Mg with x1 6= x2, there
exist U, V ∈ g such that x1 ∈ U , x2 ∈ V and U ∩ V = ∅.

From definitions of GT1 and GT2, it is obvious that every GT2-space
is GT1 but the converse may not be true as in the next example.

Example 3.4. Let R be the set of all real numbers and let B =
{(n, n + 2), (n + 1, n + 3) : n ∈ Z}. Consider a generalized topology
g = {∪S : S ⊆ B} on R. Then the GTS (R, g) is GT1 but not GT2.

Lemma 3.5. Let (X, g) be a GTS. Every g-closed set includes X−Mg.

Proof. For every g-open set U in X, U ⊆ Mg, so that X −Mg ⊆
U c.

Theorem 3.6. Let (X, g) be a GTS. Then the following properties
are equivalent:

(1) X is GT2.
(2) Let x ∈ Mg. For each z ∈ Mg with z 6= x, there is a g-open set

U containing x such that z /∈ cg(U).
(3) For x ∈Mg, ∩{cg(U) : U ∈ g and x ∈ U}={x} ∪ (X −Mg).
(4) The set ∆∪(Mg×Mg)c is g-closed in X×X, where the diagonal

∆ = {(x, x) : x ∈ X}.
Proof. (1) ⇒ (2) For x ∈ Mg, let z ∈ Mg with z 6= x. Then there

exist disjoint g-open sets U and V containing x and z, respectively. From
Lemma 2.1, z /∈ cg(U).

(2) ⇒ (3) For x ∈ Mg, let z ∈ Mg with z 6= x. Then by (2), there
is a g-open set U containing x such that z /∈ cg(U), so by Lemma 3.5,
z /∈ ∩{cg(U) : U ∈ g and x ∈ U} ⊇ ∪(X −Mg). Thus we find that
∩{cg(U) : U ∈ g and x ∈ U}={x} ∪ (X −Mg).

(3) ⇒ (4) We show that X ×X − (∆ ∪ (Mg ×Mg)c) is g-open. For
the proof, let (x, z) be any element in X × X − (∆ ∪ (Mg ×Mg)c).
Then x, z ∈ Mg and z 6= x. Since z /∈ ∩{cg(U) : U ∈ g and x ∈
U}={x} ∪ (X −Mg), there exists some U ∈ g such that x ∈ U and
z /∈ cg(U). Since U ∩ (X − cg(U)) = ∅ and X − cg(U) is a g-open set
containing z, U × (X− cg(U)) is a g-open set containing (x, z) such that
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U×(X−cg(U))∩(∆∪(Mg×Mg)c) = ∅. Thus (x, z) ∈ U×(X−cg(U)) ⊆
X×X−(∆∪(Mg×Mg)c). Hence this implies X×X−(∆∪(Mg×Mg)c)
is g-open in X ×X

(4) ⇒ (1) Let x, z ∈Mg with x 6= z. Then (x, z) /∈ ∆∪ (Mg×Mg)c.
Since ∆∪(Mg×Mg)c is g-closed, by Lemma 2.1, there exists a g-open set
U×V containing the point (x, z) such that (U×V )∩(∆∪(Mg×Mg)c) =
∅. Hence we can say that there exist U, V ∈ g such that x ∈ U , z ∈ V
and U ∩ V = ∅.

Lemma 3.7. Let (X, g) and (Y, g′) be GTS’s. If f : (X, g) → (Y, g′)
is (g, g′)-open, then f(Mg) ⊆Mg′ .

Proof. Since Mg ∈ g, f(Mg) ∈ g′ and so f(Mg) ⊆Mg′ .

Theorem 3.8. Let f : (X, g) → (Y, g′) be an injective, (g, g′)-open
and (g, g′)-continuous function on GTS’s (X, g) and (Y, g′). If Y is GT2,
then X is GT2.

Proof. Let x1, x2 ∈ Mg with x1 6= x2. Then f(x1) 6= f(x2) and
from Lemma 3.7, we have f(x1), f(x2) ∈ Mg′ . Since Y is GT2, there
exist U ′, V ′ ∈ g′ such that f(x1) ∈ U ′, f(x2) ∈ V ′ and U ′ ∩ V ′ = ∅.
This implies f−1(U ′), f−1(V ′) ∈ g, x1 ∈ f−1(U ′), x2 ∈ f−1(V ′) and
f−1(U ′) ∩ f−1(V ′) = ∅. Hence X is GT2.

Theorem 3.9. Let f : (X, g) → (Y, g′) be an injective (g, g′)-open
function on GTS’s (X, g) and (Y, g′). If X is GT2 and f(Mg) = Mg′ ,
then Y is GT2.

Proof. Let y1, y2 ∈ Mg′ with y1 6= y2. Then from f(Mg) = Mg′ ,
there exist x1, x2 ∈ Mg such that f(x1) = y1, f(x2) = y2. Since X is
GT2, there exist U, V ∈ g such that x1 ∈ U , x2 ∈ V and U ∩ V = ∅.
Thus f(U), f(V ) ∈ g′, y1 ∈ f(U) and y2 ∈ f(V ). And from injectivity
of f , f(U ∩ V ) = f(U) ∩ f(V ) = ∅ and so Y is GT2.

Theorem 3.10. The GTS (
∏

k∈J Xk, µ) with the product µ = Pk∈Jgk

is GT2 if and only if each GTS (Xk, gk) is GT2.

Proof. Assume that each GTS (Xk, gk) is GT2 and that x = (xk),
y = (yk) ∈ Mµ with x 6= y. Then xk 6= yk for some k ∈ J , so there are
disjoint gk-open sets U(xk), U(yk) ∈ gk.

Set
U =

∏{Uβ ∈ gβ : if β = k, Uβ = U(xk); otherwise, Uβ = Mgβ
};

V =
∏{Vβ ∈ gβ : if β = k, Vβ = V (yk); otherwise, Vβ = Mgβ

}.
Then U, V ∈ µ, x ∈ U , y ∈ V and U ∩ V = ∅.
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For the converse, let (
∏

k∈J Xk, µ) be GT2 and for k ∈ J , let xk, yk ∈
Mgk

with xk 6= yk. Consider two points x = (pβ), y = (qβ) ∈ Mµ

satisfying the following: If β = k, pβ = xk and qβ = yk; otherwise, pβ =
qβ = zβ for some zβ ∈Mgβ

. Since (
∏

k∈J Xk, µ) is GT2, there are disjoint
µ-open sets U and V such that x ∈ U, y ∈ V . Then xk ∈ pk(U), yk ∈
pk(V ), pk(U) ∩ pk(V ) = ∅ and from Theorem 2.2, pk(U), pk(V ) ∈ gk.
Hence (Xk, gk) is GT2.

Definition 3.11. ([7]) Let (X, g) be a GTS. Then X is said to be
relative G-regular (simply, G-regular) if for x ∈ Mg and g-closed set F
with x /∈ F , there exist U, V ∈ g such that x ∈ U , F ∩Mg ⊆ V and
U ∩ V = ∅. And if X is GT1 and G-regular, then it is said to be GT3.

Example 3.12. Let X = {a, b, c, d, e} and g = {∅, {a, b}, {c, d}, {b, c},
{a, d}, {b, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, {a, b, c, d}} be a gener-
alized topology on X.

Then (X, g) is GT2. But for b ∈ Mg and g-closed set F = {a, c, e},
there are not disjoint g-sets U and V such that b ∈ U and F ∩Mg ⊆ V ,
so that (X, g) is not GT3.

Theorem 3.13. ([7]) Let (X, g) be a GTS. Then X is G-regular if
and only if for x ∈ Mg and a g-open set U containing x, there is a
g-open set V containing x such that x ∈ V ⊆ cg(V ) ∩Mg ⊆ U .

Proof. Assume that X is G-regular. Then for x ∈ Mg and a g-open
set U containing x, x and the g-closed set U c have disjoint g-open sets
V, W with x ∈ V , U c ∩Mg ⊆ W . Since V ⊆ W c and W c is g-closed, it
follows cg(V ) ⊆ W c. This implies cg(V ) ∩ (U c ∩Mg) ⊆ cg(V ) ∩W = ∅,
thus cg(V ) ∩Mg ⊆ U .

For the converse, let F be any g-closed set and x /∈ F for x ∈ Mg.
Then since F c is a g-open set containing x, by hypothesis, there is a
g-open set V containing x such that x ∈ V ⊆ cg(V ) ∩Mg ⊆ F c, thus
cg(V )∩Mg∩F = ∅, so thatMg∩F ⊆ cg(V )c. Hence X is G-regular.

Definition 3.14. Let (X, g) be a GTS. Then X is said to be relative
G-normal (simply, G-normal) if for g-closed sets F1 and F2 with F1∩F2 =
X −Mg, there exist U, V ∈ g such that F1 ∩Mg ⊆ U , F2 ∩Mg ⊆ V
and U ∩ V = ∅. And if X is GT1 and G-normal, then it is said to be
GT4.

Recall that for nonempty set X, a GT µ is normal [3] iff, whenever
F and F ′ are µ-closed sets such that F ∩F ′ = ∅, there exist µ-open sets
G and G′ satisfying F ⊆ G, F ′ ⊆ G′ and G ∩ G′ = ∅. If Mµ = X,
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G-normality is exactly the normality. And a G-normal space need not
be G-regular, as seen by the next example.

Example 3.15. Let X = {a, b, c, d} and a generalized topology g =
{∅, {a}, {b}, {a, b}, {a, b, c}}. Then X −Mg = {d} and the g-closed sets
are X, {b, c, d}, {a, c, d}, {c, d} and {d}.

Consider the following pairs of two g-closed sets F1 and F2 satisfying
F1 ∩ F2 = X −Mg: X and {d} , {b, c, d} and {d}, {a, c, d} and {d},
{c, d} and {d}. Since {d} ∩Mg = ∅, obviously (X, g) is G-normal. But
(X, g) is not is G-regular since b /∈ {a, c, d}, and the only superset of
{a, c, d} ∩Mg is {a, b, c} which contains b.

Theorem 3.16. Let (X, g) be a GTS. Then X is G-normal if and
only if for a g-closed setF and a g-open set U with F ∩Mg ⊆ U , there
is a g-open set V containing x such that F ⊆ V ⊆ cg(V ) ∩Mg ⊆ U .

Proof. It is similar to the proof of Theorem 3.13.

Finally, the general relationship between the discussed spaces is given
in the following diagram:

GT4 ⇒ GT3 ⇒ GT2 ⇒ GT1
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