DOI QR코드

DOI QR Code

GENERALIZED QUASI-VARIATIONAL-LIKE INEQUALITIES FOR PSEUDO-MONOTONE TYPE II OPERATORS ON NON-COMPACT SETS

  • Mohammad S.R., Chowdhury (Department of Mathematics and Statistics, Faculty of Science, The University of Lahore)
  • Received : 2021.10.27
  • Accepted : 2022.05.05
  • Published : 2022.12.06

Abstract

We obtained results on upper hemi-continuous and pseudo-monotone type two mappings for sets which are not compact. M.S.R. Chowdhury and K.-K. Tan's improved result on Ky Fan's minimax inequality will be used.

Keywords

Acknowledgement

The author thanks The University of Lahore for providing partial financial supports.

References

  1. J.P. Aubin, Applied Functional Analysis, Wiley-Interscience, New York, 1979.
  2. J.P. Aubin and I. Ekeland, Applied Nonlinear Analysis, John Wiley & Sons. Inc., New York, 1984.
  3. H. Brezis, L. Nirenberg and G. Stampacchia, A remark on Ky Fan's minimax principle, Boll. U.M.I., 6 (1972), 293-300.
  4. Y.J. Cho and H.Y. Lan, A new class of generalized nonlinear multi-valued quasivariational-like-inclusions with H-monotone mappings, Math. Inequal. Appl., 10 (2007), 389-401.
  5. M.S.R. Chowdhury, The surjectivity of upper-hemicontinuous and pseudo-monotone type II operators in reflexive Banach Spaces, Ganit: J. Bangladesh Math. Soc., 20 (2000), 45-53.
  6. M.S.R. Chowdhury, Generalized variational inequalities for upper hemi-continuous and demi-operators with applications to fixed point theorems in Hilbert spaces, Serdica Math. J., 25 (1998), 163-178.
  7. M.S. R. Chowdhury, Afrah A.N. Abdou and Y.J. Cho, Existence theorems of generalized quasi-variational-like inequalities for pseudo-monotone type II operators, J. Inequal. Appl., 449 (2014), 1-18.
  8. M.S. R. Chowdhury and Y.J. Cho, Existence theorems of generalized quasi-variationallike inequalities for η-h-pseudo-monotone type I operators on non-compact sets, J. Inequal. Appl., 79 (2012), 1-19.
  9. M.S.R. Chowdhury and Y.J. Cho, Generalized bi-quasi-variational inequalities for quasipseudo-monotone type II operators on non-compact sets, J. Inequal. Appl., Article ID 237191, (2010), 1-17. https://doi.org/10.1155/2010/237191
  10. M.S.R. Chowdhury and K.K. Tan, Generalized variational-like inequalities for pseudomonotone type III operators, Cent. Eur. J. Math., 6 (2008), 526-536. https://doi.org/10.2478/s11533-008-0049-1
  11. M.S.R. Chowdhury and K.K. Tan, Application of upper hemi-coninuous operators on generalized bi-quasi-variational inequalities in locally convex topological vector spaces, Positivity, 3 (1999), 333-344. https://doi.org/10.1023/A:1009849400516
  12. M.S.R. Chowdhury and K.K. Tan, Applications of pseudo-monotone operators with some kind of upper semi-continuity in generalized quasi-variational inequalities on noncompacts, Proc. Amer. Math. Soc., 126 (1998), 2957-2968. https://doi.org/10.1090/S0002-9939-98-04436-0
  13. M.S.R. Chowdhury and K.K. Tan, Generalized variational inequalities for quasimonotone operators and applications, Bull. Polish Acad. Sci., 45 (1997), 25-54.
  14. M.S.R. Chowdhury and K.K. Tan, Generalization of Ky Fan's minimax inequality with applications to generalized variational inequalities for pseudo-monotone operators and fixed theorems, J. Math. Anal. Appl., 204 (1996), 910-929. https://doi.org/10.1006/jmaa.1996.0476
  15. M.S.R. Chowdhury and G. Tarafdar, Existence theorems of generalized quasi-variational inequalities with upper hemi-continuous and demi-operators on non-compact sets, Math. Inequal. Appl., 2 (1999), 585-597.
  16. M.S.R. Chowdhury and H.B. Thompson, Generalized variational-like inequalities for pseudo-monotone type II operators, Nonlinear Anal., 63 (2005), 321-330.
  17. A.P. Ding and G. Tarafdar, Generalized variational-like inequalities with pseudomonotone set-valued mappings, Arch. Math., 74 (2000), 302-313. https://doi.org/10.1007/s000130050447
  18. K. Fan, A minimax inequality and applications, in "Inequalities, III" , (O. Shisha, Ed.), 103-113, Academic Press, San Diego, 1972.
  19. Y.P. Fang, Y.J. Cho, N.J. Huang and S.M. Kang, Generalized nonlinear implicit quasivariational-like inequalities for set-valued mappings in Banach spaces, Math. Inequal. Appl., 6 (2003), 331-337.
  20. H. Kneser, Sur un theor'eme fundamental de la theorie des jeux, C.R. Acad. Sci. Paris, 234 (1952), 2418-2420.
  21. H.Y. Lan, Y.J. Cho and N.J. Huang, Stability of iterative procedures for a class of generalized nonlinear quasi-variational-like inclusions involving maximal η-monotone mappings, Fixed Point Theory and Applications, Edited by Y.J. Cho, J.K. Kim and S.M. Kang, 6 (2006), 107-116.
  22. R.T. Rockafeller, Convex Analysis, Princeton Univ. Press, Princeton, 1970.
  23. M.H. Shih and K.K. Tan, Generalized bi-quasi-variational inequalities, J. Math. Anal. Appl., 143 (1989), 66-85. https://doi.org/10.1016/0022-247x(89)90029-2
  24. M.H. Shih and K.K. Tan, Generalized quasi-variational inequalities in locally convex topological vector spaces, J. Math. Anal. Appl., 108 (1985), 333-343. https://doi.org/10.1016/0022-247x(85)90029-0
  25. W. Takahashi, Nonlinear variational inequalities and fixed point theorems, J. Math. Soc. Japan, 28 (1976), 166-181.