• Title/Summary/Keyword: Generalized dispersion model

Search Result 29, Processing Time 0.022 seconds

Particle Dispersion and Effect of Spin in the Turbulent Boundary Layer Flow (난류 경계층 유동에서 입자의 확산과 스핀의 영향)

  • Kim, Byung-Gu;Lee, Chang-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.1
    • /
    • pp.89-98
    • /
    • 2004
  • In this paper, we develope a dispersion model based on the Generalized Langevin Model. Thomson's well-mixed condition is the well known criterion to determine particle dispersion. But, it has 'non-uniqueness problem'. To resolve this, we adopt a turbulent model which is a new approach in this field of study. Our model was greatly simplified under the self-similarity condition, leaving model only two model constants $C_{0}$ and ${\gamma}$$_{5}$ that control the dispersion and spin which measures rotational property of the Lagrangian particle trajectory. We investigated the sign of spin as well as magnitude by using the Direct Numerical Simulation. Model calculations were performed on the neutrally stable boundary layer flow. We found that spin has weak effect on the particle dispersion but it shows the significant effect on the horizontal flux compared to the zero-spin model.

EFFECT OF FLOW UNSTEADINESS ON DISPERSION IN NON-NEWTONIAN FLUID IN AN ANNULUS

  • NAGARANI, P.;SEBASTIAN, B.T.
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.3_4
    • /
    • pp.241-260
    • /
    • 2017
  • An analysis is made to study the solute transport in a Casson fluid flow through an annulus in presence of oscillatory flow field and determine how this flow influence the solute dispersion along the annular region. Axial dispersion coefficient and the mean concentration expressions are calculated using the generalized dispersion model. Dispersion coefficient in oscillatory flow is found to be a function of frequency parameter, Schmidt number, and the pressure fluctuation component besides its dependency on yield stress of the fluid, annular gap and time in the case of steady flow. Due to the oscillatory nature of the flow, the dispersion coefficient changes cyclically and the amplitude and magnitude of the dispersion increases initially with time and reaches a non - transient state after a certain critical time. This critical value varies with frequency parameter and independent of the other parameters. It is found that the presence of inner cylinder and increase in the size of the inner cylinder inhibits the dispersion process. This model may be used in understanding the dispersion phenomenon in cardiovascular flows and in particular in catheterized arteries.

Comparing the efficiency of dispersion parameter estimators in gamma generalized linear models (감마 일반화 선형 모형에서의 산포 모수 추정량에 대한 효율성 연구)

  • Jo, Seongil;Lee, Woojoo
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.1
    • /
    • pp.95-102
    • /
    • 2017
  • Gamma generalized linear models have received less attention than Poisson and binomial generalized linear models. Therefore, many old-established statistical techniques are still used in gamma generalized linear models. In particular, existing literature and textbooks still use approximate estimates for the dispersion parameter. In this paper we study the efficiency of various dispersion parameter estimators in gamma generalized linear models and perform numerical simulations. Numerical studies show that the maximum likelihood estimator and Cox-Reid adjusted maximum likelihood estimator are recommended and that approximate estimates should be avoided in practice.

A New Lagrangian Stochastic Model for Prediction of Particle Dispersion in Turbulent Boundary Layer Flow (경계층 유동에서 입자확산의 예측을 위한 라그랑지안 확률모델)

  • Kim, Byung-Gu;Lee, Chang-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1851-1856
    • /
    • 2003
  • A new Lagrangian stochastic dispersion model is developed by combining the GLM(generalized Langevin model) and the elliptic relaxation method. Under the physically plausible assumptions a simple analytical solution of elliptic relaxation is obtained. To compare the performance of our model with other model, the statistics of particle velocity as well as concentration are investigated. Numerical simulation results show good agreement with available experimental data.

  • PDF

Likelihood-Based Inference on Genetic Variance Component with a Hierarchical Poisson Generalized Linear Mixed Model

  • Lee, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.8
    • /
    • pp.1035-1039
    • /
    • 2000
  • This study developed a Poisson generalized linear mixed model and a procedure to estimate genetic parameters for count traits. The method derived from a frequentist perspective was based on hierarchical likelihood, and the maximum adjusted profile hierarchical likelihood was employed to estimate dispersion parameters of genetic random effects. Current approach is a generalization of Henderson's method to non-normal data, and was applied to simulated data. Underestimation was observed in the genetic variance component estimates for the data simulated with large heritability by using the Poisson generalized linear mixed model and the corresponding maximum adjusted profile hierarchical likelihood. However, the current method fitted the data generated with small heritability better than those generated with large heritability.

Modeling clustered count data with discrete weibull regression model

  • Yoo, Hanna
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.4
    • /
    • pp.413-420
    • /
    • 2022
  • In this study we adapt discrete weibull regression model for clustered count data. Discrete weibull regression model has an attractive feature that it can handle both under and over dispersion data. We analyzed the eighth Korean National Health and Nutrition Examination Survey (KNHANES VIII) from 2019 to assess the factors influencing the 1 month outpatient stay in 17 different regions. We compared the results using clustered discrete Weibull regression model with those of Poisson, negative binomial, generalized Poisson and Conway-maxwell Poisson regression models, which are widely used in count data analyses. The results show that the clustered discrete Weibull regression model using random intercept model gives the best fit. Simulation study is also held to investigate the performance of the clustered discrete weibull model under various dispersion setting and zero inflated probabilities. In this paper it is shown that using a random effect with discrete Weibull regression can flexibly model count data with various dispersion without the risk of making wrong assumptions about the data dispersion.

Asymptotic Relative Efficiency for New Scores in the Generalized F Distribution

  • Choi, Young-Hun
    • Communications for Statistical Applications and Methods
    • /
    • v.11 no.3
    • /
    • pp.435-446
    • /
    • 2004
  • In this paper we introduced a new score generating function for the rank dispersion function in a multiple linear model. Based on the new score function, we derived the asymptotic relative efficiency, ARE(11, rs), of our score function with respect to the Wilcoxon scores for the generalized F distributions which show very flexible distributions with a variety of shape and tail behaviors. We thoroughly explored the selection of r and s of our new score function that provides improvement over the Wilcoxon scores.

Nonlinear Displacement Discontinuity Model for Generalized Rayleigh Wave in Contact Interface

  • Kim, No-Hyu;Yang, Seung-Yong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.6
    • /
    • pp.582-590
    • /
    • 2007
  • Imperfectly jointed interface serves as mechanical waveguide for elastic waves and gives rise to two distinct kinds of guided wave propagating along the interface. Contact acoustic nonlinearity (CAN) is known to plays major role in the generation of these interface waves called generalized Rayleigh waves in non-welded interface. Closed crack is modeled as non-welded interface that has nonlinear discontinuity condition in displacement across its boundary. Mathematical analysis of boundary conditions and wave equation is conducted to investigate the dispersive characteristics of the interface waves. Existence of the generalized Rayleigh wave(interface wave) in nonlinear contact interface is verified in theory where the dispersion equation for the interface wave is formulated and analyzed. It reveals that the interface waves have two distinct modes and that the phase velocity of anti-symmetric wave mode is highly dependent on contact conditions represented by linear and nonlinear dimensionless specific stiffness.

Modelling Count Responses with Overdispersion

  • Jeong, Kwang Mo
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.6
    • /
    • pp.761-770
    • /
    • 2012
  • We frequently encounter outcomes of count that have extra variation. This paper considers several alternative models for overdispersed count responses such as a quasi-Poisson model, zero-inflated Poisson model and a negative binomial model with a special focus on a generalized linear mixed model. We also explain various goodness-of-fit criteria by discussing their appropriateness of applicability and cautions on misuses according to the patterns of response categories. The overdispersion models for counts data have been explained through two examples with different response patterns.

Model Checking for Joint Modelling of Mean and Dispersion (평균과 산포의 동시 모형화에 대한 모형검토)

  • Ha, Il-Do;Lee, Woo-Dong;Cho, Geon-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.8 no.2
    • /
    • pp.195-209
    • /
    • 1997
  • The joint modelling of mean and dispersion in quasi-likelihood models which greatly extend the scope of generalized linear models, is required in case that the dispersion parameter, the variance component of response variables, is not constant but changes by depending on any covariates. In this paper, by using statistical package GENSTAT(release 5.3.2, 1996) which makes a easily analyze real data through this joint modelling, we mention necessities that must consider this joint modelling rather than existing mean models through model checking based on graphic methods for esterase assay data introduced by Carrol and Ruppert(1987, pp.46-47), and then study methods finding reasonable joint model of mean and dispersion for this data.

  • PDF