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EFFECT OF FLOW UNSTEADINESS ON DISPERSION IN

NON-NEWTONIAN FLUID IN AN ANNULUS

P. NAGARANI∗ AND B.T. SEBASTIAN

Abstract. An analysis is made to study the solute transport in a Casson
fluid flow through an annulus in presence of oscillatory flow field and deter-

mine how this flow influence the solute dispersion along the annular region.
Axial dispersion coefficient and the mean concentration expressions are cal-
culated using the generalized dispersion model. Dispersion coefficient in
oscillatory flow is found to be a function of frequency parameter, Schmidt

number, and the pressure fluctuation component besides its dependency
on yield stress of the fluid, annular gap and time in the case of steady flow.
Due to the oscillatory nature of the flow, the dispersion coefficient changes
cyclically and the amplitude and magnitude of the dispersion increases ini-

tially with time and reaches a non - transient state after a certain critical
time. This critical value varies with frequency parameter and independent
of the other parameters. It is found that the presence of inner cylinder and
increase in the size of the inner cylinder inhibits the dispersion process.

This model may be used in understanding the dispersion phenomenon in
cardiovascular flows and in particular in catheterized arteries.
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1. Introduction

The flow/dispersion in tube/annulus has abundant applications in differ-
ent branches of engineering, chemical processing industries, biomechanics and
petroleum science. The problems of mass transfer have been used for the con-
struction of high-performance liquid chromatography instruments to analyse the
effective diffusivity of liquids [12]. The annular chromatographic method is used
for separation of metals, sugars and proteins [6, 9, 16] . In the indicator di-
lution technique, it is a common practice among physiologists to use catheters
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to inject the dye and to withdraw blood samples for the purpose of measure-
ments [4, 14, 32]. The study of the blood-tissue exchange is also done using the
multiple dilution technique which often needs frequent sampling of the blood
using of catheters [34].

Due to wide range of applications of dispersion phenomenon, several re-
searchers studied the dispersion in Newtonian/non-Newtonian fluids. The very
well known analyses used in these studies are due to Taylor [35], Aris [1] and
the derivative expansion method (also known as generalized dispersion model)
given by Gill and Sankarasubramanian [18]. Aris [2] studied the dispersion of
a solute in coaxial annular region by considering two phases in which the so-
lute can also pass into another fluid phase flowing in an annular region around
the first. This study illustrates the applications of the model in distillation
and partition chromatography. Using generalized dispersion model, Rao and
Deshikachar [31] studied the dispersion problem in annuls in the case of New-
tonian fluid and this theory was extended by Sarkar and Jayaraman [32] in the
case of wall absorption. Ramana and Sarojamma [30] studied the dispersion of a
solute in an annulus considering the flowing fluid as Herschel - Bulkley by using
the generalized dispersion model.

The oscillatory flow models have gained attention due to its applications in
industry, environment, estuaries, modelling of transport phenomena in cardio-
vascular flows and in understanding the exchange of mass and heat between the
lung and environment [21]. Aris [3] studied the dispersion phenomenon in oscil-
latory flow filed using his method of moments. In view of the applications of the
dispersion in estuaries, Chatwin [11] studied the dispersion of a passive contam-
inant in a tube in which the flow is driven by a longitudinal pressure gradient
varying harmonically with time. Tsangaris and Athanassiadis [36] obtained the
effective diffusion coefficient of a contaminant in an oscillatory flow in annulus
by considering the flowing fluid as Newtonian. Pedley and Kamm [29] studied
the axial dispersion in an annulus in a curved tube in the presence of oscillatory
flow filed by asymptotic analysis for the limiting case of small annular gap and
by numerical solution for arbitrary annular gap. Hydon and Pedley [20] anal-
ysed the axial dispersion in a finite channel with oscillating walls and in presence
of oscillating flow to application of the axial dispersion to understand the gas
transport in the airways of the lung. Using, generalized dispersion model the
dispersion problem in oscillatory flows in Newtonian fluid with conductive walls
was studied by Jiang and Grotberg [21].The annulus problem with wall absorp-
tion is studied by Sarkar and Jayaraman [33] and discussed the application of
the models to the catheterized artery.

Blood flow in arteries shows various properties such as pulsatility, curvature,
branching, and elastic walls and the transport of any species in the blood is
affected by these phenomena. Blood flow is pulsatile in nature with the same
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frequency as the heartbeat. The experimental data on blood properties [13]
showed that for small shear rate (γ̇ < 10 s−1) and for hematocrit less than 40%
the properties of blood can be described approximately by Casson’s equation.
Experiments on blood also revealed that blood has a finite yield stress of 0.04
dynes/cm2 at 40%hematocrit [13] . Also, various experiments conducted on
blood [10, 23, 24, 25] with different heamatocrits, anticoagulants and tempera-
ture confirmed that the flow of blood can be described by Casson’s fluid model
over a wide range of shear rates, say (1-100,000 s−1), and more accurately at
low shear rates (γ̇ < 20 s−1). Hence, the modification to the classical Taylor-
Aris and Gill-Sankarasubramanian’s dispersion theory caused by pulsatility and
non-Newtonian rheology is very important to analyse the dispersion in blood
flows. In these directions, Nagarani et al. [27] studied the effects of boundary
absorption on dispersion in Casson fluid flow in an annulus in the case of steady
flow. They showed that an increase in yield stress and decrease in annular gap,
decreases the dispersion coefficient.

With this primary motive to understand the combined effects of the flow os-
cillation, annular gap and the Non-Newtonian rheology on dispersion process
here we gave a mathematical model of dispersion of a solute in Casson fluid flow
in an annulus in presence of oscillatory flow. We used the generalized dispersion
model to study the process and according to this modal the whole process is
expressed in terms of convection and dispersion coefficients. The expression for
mean concentration is obtained. Pictorial representations of the mean concentra-
tion and dispersion coefficient for the variation of other parameters are shown in
section 4. Results are discussed and interpreted with physical significance of the
observed variations. Application of this study in understanding the dispersion
process in a catheterized artery is discussed in section 5.

Figure 1. Schematic diagram of the proposed model
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2. Mathematical Formulation

We considered an unsteady, axi-symmetric, incompressible, pulsatile flow of a
Casson fluid flowing in an annulus. Here the annulus is considered to be formed
between two coaxial cylinders whose inner cylinder radius is ka (0 < k < 1) and
the outer cylinder radius is a. The axial and radial coordinates are represented
by z̄ and r̄ , respectively (Fig.1). The dispersion of a bolus of solute, which
is initially of z̄s units in length and of uniform concentration C0 is studied.
For fully developed axisymmetric incompressible flow, the unsteady convective
diffusion equation which describes the local concentration C (t, z, r) of a solute
in non-dimensional form can be written as,

∂C

∂t
+ w(t, r)

∂C

∂z
=

(
1

r

∂

∂r
( r

∂

∂r
) +

1

Pe2
∂2

∂z2

)
C. (1)

with non-dimensional quantities

C =
C̄

C0
, z =

Dmz̄

a2w0
, t =

Dmt̄

a2
, r =

r̄

a
, w =

w̄

w0
. (2)

Where t is the time, w is the axial velocity, Dm is the coefficient of molecular

diffusion, which is assumed to be a constant, w0 = P0a
2

2µ∞
, µ∞ is the Newtonian

viscosity of the fluid, P 0 is the steady state component of pressure gradient of
the fluid, Pe = aw0

Dm
, the Peclet number and k is the non-dimensional radius of

the inner cylinder (also the ratio of inner cylinder to outer cylinder radius). The
variables with bar represent the corresponding dimensional quantities.

The initial condition considered can be written in non-dimensional form as

C (0 , z, r ) =

{
1 , |z| ≤ zs

2
0 , |z| > zs

2

(3)

and the boundary conditions in dimensionless form for the given model are

∂C

∂r
(t, z, k) = 0 (4a)

∂C

∂r
(t, z, 1) = 0 (4b)

Conditions (4a) and (4b) constitute the non-flux condition at the impermeable
walls of the inner tube (r = k) and outer tube (r = 1) respectively. Since the
amount of solute in the system is finite we also will have,

C ( t , ∞ , r) = 0. (5)

2.1. Casson’s Constitutive Equation and Velocity distribution in an
annulus. The constitutive equation for a Casson fluid relating the stress (τ)
and shear rate ∂w

∂r in non-dimensional form is given by

τ
1
2 = τ

1
2
y +

(
−∂w

∂r

) 1
2

if τ > τy (6a)
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∂w

∂r
= 0 if τ 6 τy (6b)

where τ = τ̄
µ∞(w0/a)

and τy =
τ̄y

µ∞(w0/a)
are the non-dimensional shear stress and

yield stress respectively. The relation given above in (6a-b) is appropriate for the
case when τ is positive and ∂w

∂r is negative. The more general situation where τ

and ∂w
∂r can change the sign (in the case of annular flow as Bird et al., [5]) and

can be written as,

∂w

∂r
= −

[
1 +

τy
|τ |

− 2
τ
1/2
y

|τ |1/2

]
τ if |τ | ≥ τy (7a)

∂w

∂r
= 0 if |τ | ≤ τy (7b)

From Eqs. (7a) and (7b), we can see that the flow of a Casson fluid in an annulus
has three phases such as that in the central region velocity profile is flat and,
hence, forms a plug flow region. In the plug flow region the fluid does not flow by
itself, but is carried along by the fluid in the two adjacent shear flow regions as
a solid body with a constant velocity, which is known as the plug flow velocity.
If the plug flow region is represented by λ1 ≤ r ≤ λ2 (k ≤ λ1, λ2 ≤ 1) then the
two shear flow regions can be represented as k ≤ r ≤ λ1 and λ2 ≤ r ≤ 1. Here
λ1 and λ2 are known as yield plane locations. Then the Casson constitutive
Eq.(7) in these regions can be written as,

∂w

∂r
= −τ + τy − 2τ1/2y |τ |1/2 if k ≤ r ≤ λ1 (8a)

∂w

∂r
= 0 if λ1 ≤ r ≤ λ2 (8b)

∂w

∂r
= −(τ + τy − 2τ1/2y τ1/2) if λ2 ≤ r ≤ 1 (8c)

The velocity expression for the case of pulsatile flow in Casson fluid flow in these
regions is given by Dash et al. [14] as

w(t, r) = w+(r, t) =
∂p

∂z
(t)

[
λ2 ln(r/k)− (

r2 − k2

2
) + Ω (r − k)

−2Ω1/2

∫ r

k

(
λ2 − r2

r
)1/2dr

]
for k ≤ r ≤ λ1

(9a)

w(t) = w− = wp = w+(t, λ1) = w++(t, λ2) for λ1 ≤ r ≤ λ2 (9b)

w(t, r) = w++(r, t) =
∂p

∂z
(t)

[
λ2 ln(r) + (

1− r2

2
) + Ω(1− r)

−2Ω1/2

∫ 1

r

(
r2 − λ2

r
)1/2dr

]
for λ2 ≤ r ≤ 1

(9c)
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where

λ2 = λ1λ2 (10a)

Ω = λ2 − λ1 =
τy

∂p
∂z (t)

(10b)

is the width of the plug region. The superscripts “+” and “++” represent the
shear flow regions k ≤ r ≤ λ1 and λ2 ≤ r ≤ 1, respectively, and the superscript
”–” represents the plug flow region λ1 ≤ r ≤ λ2. Also,

∂p

∂z
(t) = 1 + e cosα2Sct, (11)

where, e = P1

P0
is the amplitude of the pulsatile pressure gradient, α = a

√
ω
ν

is the Womersley number, Sc = υ
Dm

is the Schmidt number, P1 is the fluc-
tuating component of pressure, ω is the frequency of pressure pulsation, ν is
the kinematic viscosity. Here the product α2Sc is a measure of the ratio of the
characteristic time of transverse diffusion to the period of oscillation since α2Sc
can be taken as

α2Sc =

(
a2ω

ν

) (
ν

Dm

)
=

(a2/Dm)

(1/ω)
=

t1
t2

(12)

where the time for lateral transport of mass is t1 and period of oscillation t2.
From the continuity condition of velocity distribution (9a) and (9b), λ1 must
satisfies the equation

3Ω2 + 6Ωλ1 − 2λ1(λ1 +Ω) ln [k(λ1 +Ω)/λ1]− (1 + k)(2Ω + 1− k)−

4Ω1/2

[∫ λ1

k

(
λ1(λ1 +Ω)− r2

r

)1/2

dr −
∫ 1

λ1+Ω

(
r2 − λ1(λ1 +Ω)

r

)1/2

dr

]
= 0

(13)
This integral equation is solved numerically for λ1 using the Regular - Falsi

method. Once is known λ2 can be obtained from (10a) and (10b).

3. Method of Solution

The solution of the convective-diffusion equation (1) along with the given set
of initial and boundary conditions (3)-(5) by following the analysis of Gill and
Sankarasubramanian [18] can be assumed as

C = Cm +
∞∑
i=1

fi(t, r)
∂iCm

∂zi
(14)

where the dimensionless mean concentration Cm is defined as

Cm =
2

1− k2

∫ 1

k

C r dr. (15)
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Multiplying Eq.(1) by 2r
1−k2 and integrating with respect to r from k to 1, we

get
∂Cm

∂t
=

1

Pe2
∂2 Cm

∂z2
− 2

1− k2
∂

∂z

∫ 1

k

w(t, r)C(t, z, r) r dr . (16)

If we introduce (14) into (16), the dispersion model for Cm, by assuming the
process of distributing Cm is diffusive in nature right from the time is zero, is
obtained as

∂Cm

∂t
=

∞∑
i=1

Ki(t)
∂iCm

∂zi
, (17)

where

Ki(t) =
δi2
Pe2

− 2

1− k2

∫ 1

k

fi−1 (t, r)w(t, r) r dr, i = 1, 2..... (18)

and δijdenotes Kronecker delta,

δij =

{
1, i = j
0, i ̸= j.

(19)

Here K1 and K2 are termed as convection and dispersion coefficients respec-

tively for Cm. Using (14), (17) in (1) and equating the coefficients of ∂
n
Cm

∂zn , n
= 1, 2. . . the set of differential equations for f n are obtained as

∂fn
∂t

=
1

r

∂

∂r
(r
∂fn
∂r

)− w(t, r)fn−1 +
1

Pe2
fn−2 −

n∑
i=1

Kifn−i, n = 1, 2, . . .

(20)
The initial and boundary conditions for fn are obtained from (3)-(5) as

fn(0, r) = 0, n = 1, 2, . . . (21)

∂fn
∂r

(t, k) = 0, n = 1, 2, . . . (22a)

∂fn
∂r

(t, 1) = 0, n = 1, 2, . . . (22b)

Since Eqs. (18) and (20) are coupled, we solved these equations one after the
other. From Eq.(18), the expression for K1(t) is obtained as

K1 =
−2

1− k2

∫ 1

k

w(t, r)r dr. (23)

The analytical expression for K1 is obtained but not provided since the expres-
sion is cumbersome. The equation for f1 from (20) can be written as

1

r

∂

∂r
(r
∂f1
∂r

)− ∂f1
∂t

= K1(t) + w(t, r) (24)

and the initial and boundary conditions for f1 from Eqs. (21) and (22) are

f1(0, r) = 0 (25a)
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∂f1
∂r

(t, k) = 0 (25b)

∂f1
∂r

(t, 1) = 0 (25c)

The solution of the non-homogeneous boundary value problem (24) subjected to
the conditions (25a-c) is obtained as [7] ,

f1(t, r) =

∞∑
n=1

[∫ t

0
e−µ2

n(t−s)γn(s)dsE0(µnr)∫ 1

k
rE2

0(µnr)dr

]
(26)

=

[ ∞∑
n=1

2

E2
0(µn)− k2E2

0(µnk)

∫ t

0

e−µ2
n(t−s)γn(s)dsE0(µnr)

]
where γn are given by

γn(s) = −
∫ 1

k

[w(t, r) +K1(t)] rE0(µnr) dr (27a)

E0(µnr) = Y0(µnr)J1(µn)− J0(µnr)Y1(µn) (27b)

µn are the roots of the equation

Y1(µnk)J1(µn)− J1(µnk)Y1(µn) = 0. (27c)

J 0 and J 1 are Bessel functions of first kind of order zero and one, respectively,
and Y 0 and Y 1 are Bessel functions of second kind of order zero and one,
respectively. The dispersion coefficient can be obtained using (18), (26) and
(27a-c) as

K2 −
1

Pe2
= − 2

1− k2

∫ 1

0

w(t, r) f1(t, r) r dr. (28)

We calculated K2 numerically since the expressions for w(t, r) and f1(t, r) are
cumbersome. By neglecting the terms that involved K 3, K 4 etc., in Eq.(18) the
generalized dispersion model takes the form

∂Cm

∂t
= K1(t)

∂Cm

∂z
+ K2(t)

∂2Cm

∂z2
. (29)

The initial and boundary conditions for Cmare obtained as

Cm(0, z) =

{
1 if |z| 6 zs

2

0 if |z| > zs
2

(30)

Cm(t, ∞) = 0. (31)

The mean concentration Cm from Eq. (29) satisfying conditions (30) and (31)
can be obtained as

Cm =
1

2

[
erf

[
1
2zs + z1

2z
1
2

2

]
+ erf

[
1
2zs − z1

2z
1
2

2

]]
, (32)
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where

z1 = z +

∫ t

0

K1(η) dη (33a)

z2 =

∫ t

0

K2(η) dη. (33b)

4. Results and Discussion

Present study analyses the effects of flow oscillation, annular gap and yield
stress of the fluid on the dispersion process. It is observed that dispersion co-
efficient in oscillatory flow is a function of Womersely frequency parameter α,
Schmidt number Sc and fluctuating pressure component e in addition to its de-
pendency on the dispersion time t, yield stress of the fluid τy and the radius of
the inner cylinder k (or in other words annular gap) in case of steady flow prob-
lem. The mean concentration Cm is also a function of the above parameters,
and in addition the slug input length zs. In the present discussion, we fixed both
Pe and Sc at 1000, the frequency parameter α is considered as small (< 1), the
range 0-0.2 is taken for τy, the range 0.1-0.3 is taken for k, the fluctuating com-
ponent e is taken from 0 to 0.5 and zs is taken 0.02 and 0.004. These ranges of
values were chosen as these are typical ranges in the cardiovascular system. For
each value of k, the yield plane locations are found numerically from Eqs.(10)
and (13). For each value of k, the associated eigenvalues µn for n = 1, 2 . . . are
calculated numerically using Eq. (27c). The results reduced to the steady case
when e = 0 and to the Newtonian case when τy= 0. The results show good
agreement with Dash et al. [15] with steady case and k → 0, and with Gill and
Sankarasubramanian [18] in the limit case as k → 0 and in Newtonian steady
case.

Figures 2-5, project the variation of dispersion coefficient K2 (from which
the additive contribution of the 1/Pe2 is deducted) with time t for different
values of τy, k, e and α by fixing Sc = 1000. It can be seen from Eqs.(9) –(12),
that the velocity of the fluid is periodic with period TL = 2π

α2Sc and hence for
α = 0.05, 0.1 and 0.2 the time periods are 2.5, 0.628 and 0.157, respectively
for Sc = 1000. Figs. 2-5 show the results for four cycles for the variation of
dispersion coefficient with time t for the variation of other parameters. It is
observed that due to the oscillatory nature of the flow the dispersion coefficient
changes cyclically and the amplitude and magnitude of the dispersion increases
initially with time and reaches a non-transient state after a certain critical time.
This critical value of this time varies with α and independent of τy, e and k. It is
observed that as τy increases the amplitude of the fluctuations of K2 decreases
and also decreases the magnitude of the dispersion coefficient. This nature is
expected as an increase in τy results in a decrease in the flow velocity, and hence
the dispersion rate.
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FIGURE 2. Variation of dispersion coefficient (K2 − 1/Pe2) with t for
different, values of τy when e = 0.5, k = 0.1 a) α = 0.05 b) α = 0.1
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FIGURE 3. Variation of dispersion coefficient (K2 − 1/Pe2) with t for different
values τy when α = 0.2, k = 0.1 a) e = 0.2 b) e = 0.5

From Figs.2 (a-b) it is observed that the critical time to reach non-transient
state is different for different α. For α = 0.05 that critical time is about t = 2.5,
but for α = 0.1 it is about 0.55 when k = 0.1, e = 0.5 and for all τy We could see
from Figs. 2 (a-b) that the magnitude of K2 decreases with α, which could be
due to an increase in α which decreases the flow, and hence reduces K2. Also,
the amplitude of fluctuations of K2 increases with α. The maximum amplitude
of K2 is 2.089×10−4 at α = 0.05 and 1.185×10−4 at α = 0.1 in the case of non-
Newtonian fluid (τy = 0.05). Also in the case of Newtonian fluid (τy = 0) it is
seen that the maximum value of K2 is changing from 6.273×10−4 to 3.683×10−4
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as α changes from 0.05 to 0.1.

Figures 3 (a-b) show the variation of K2 with e and we can notice that as e
increases the fluctuations and the magnitude of K2 increases. Also the value of
K2 is changing from 5.719 × 10−5 to 8.739 × 10−5 when e changes from 0.2 to
0.5 for α = 0.2 in the case of non-Newtonian fluid (τy = 0.05). Fig. 4 compares
the results of the variation of dispersion coefficient in the case of different e and
one can observe from the figure as e increases the peak value of the dispersion
coefficient also increases. Fig. 5 shows variation of dispersion coefficient explic-

itly for different k values in the case of Casson fluid (τy = 0.05) by fixing the
other parameters. It is noticed that the decrease in the annular gap inhibits
the dispersion process which could be due to decrease in annular gap leads to
decrease of flow in the annulus, which causes the lower mass transfer rate, as was
noticed by Rao and Desikachar [33] . It is seen that the dispersion coefficient
decreases from 5.719 × 10−5 to 3.704 × 10−6 as k increases from 0.1 to 0.3 at
time t = 0.1, when τy = 0.05.
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FIGURE 4. Variation of dispersion coefficient (K2 − 1/Pe2) with t for different
values of e when τy = 0.05, α = 0.2, k = 0.1
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FIGURE 5. Variation of dispersion coefficient (K2 − 1/Pe2) with t for
different values of k when e = 0.5, α = 0.2,, τy = 0.05

Figures 6-11 show the variation of mean concentration Cm for oscillatory flow
with axial distance z for the variation of t, τy, zs, α, e and k. Figs. 6 (a-b) show
the variation of Cm with τy for α = 0.05 and 0.1, respectively. In both the cases,
it is seen that the peak value of mean concentration increases with τy, which
matches with earlier results of Dash et al. [15] . Fig. 7 depicts the variation of
mean concentration Cm with α. We noticed that as α increases the peak of the
mean concentration increases, and also Cm decays faster for larger α. It is also
noticed that when α changes from 0.05 to 0.1 the change in mean concentration
is more as compared to changing α from 0.1 to 0.2.Fig. 8 shows the variation of
Cm for different values of e and one can observe that as e increases the peak of
the mean concentration decreases and also observed that as e increases the peak
of Cm shifts towards right. Fig. 9 shows the variation of Cm for different values
of k. It is seen that as k increases the peak of the mean concentration increases
and shifts towards the left. The peak value of Cm in the case of Non-Newtonian
fluid (τy = 0.05) increases from 0.8217 to 0.9998 as k increases from 0.1 to 0.3
(Fig. 9). Fig. 10 shows the variation of Cm with z for the variation of the
initial slug input of solute length zs. It is observed that the values of Cm is less
in magnitude in the case zs= 0.004 and other properties are similar as in all
the three cases when zs= 0.004, 0.008 and 0.02. We also see that as t increases
the peak of mean concentration decreases (Fig. 12), which shows that as time
progress the concentration of the solute decreases.
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FIGURE 6. Axial distribution of mean concentration Cm different τy when e
= 0.1, zs= 0.02, k = 0.1 a) α= 0.05 b) α= 0.1
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FIGURE 7. Axial distribution of mean concentration Cm different α when e =
0.1, t = 0.1, zs = 0.02, k = 0.1, τy=0.1
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FIGURE 8. Axial distribution of mean concentration Cm different e when τy=
0.05 zs= 0.02, k = 0.1, α = 0.05
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FIGURE 9. Axial distribution of mean concentration Cm different k when e =
0.1 zs= 0.02, k = 0.1, α = 0.05 , τy = 0.05
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FIGURE 10. Axial distribution of mean concentration Cm for different zs
when e = 0.1, τy= 0.1, k = 0.1, α = 0.05
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FIGURE 11. Axial distribution of mean concentration Cm different t , when e
= 0.1, τy = 0.05, zs= 0.02, k= 0.1, α = 0.1

5. Application to Catheterized Artery

The mathematical model presented in Sections 2 and 3 can be used to under-
stand the dispersion of an indicator in a catheterized artery of radius a and the
catheter radius ka, (0 < k < 1) which is introduced coaxially. We considered
the flow is oscillatory since the blood flow is unsteady owing to the pumping
of the heart and also the flowing fluid as Casson fluid to account for the yield
stress of the blood [17, 22]. The objective of the model is to provide the cor-
rection for the catheter induced errors in the measured values based on axial
dispersion of substance owing to combined action of convection and diffusion.
The introduction of a catheter into the blood vessel can be potent cause of eddy
formation and mixing of blood. The introduction of catheter always introduces
some distortion in the time concentration curve so that recorded curve is not of
the same shape as the in situ concentration - time relation at the withdrawal
site [26] . Experimental studies with calibration based on mathematical models
for the removal of the catheter distortion are reported in [19, 28] . The ratio of
catheter size to radius of the artery is taken in the range of 0.1 to 0.3 to analyse
the effect of catheter size on the transport process. The values of the yield stress
are varied from 0 to 0.1; the Womersley frequency parameter (α) is taken as <
1 and the value of Schmidt is fixed at 1000, so that the results can be applied
to cardiovascular flows [8] .

The discussion in the Section 4 shows that the catheter size and yield stress
have an effect on dispersion coefficient in catheterized arteries. The variation of
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K2 with catheter size k for different values of τy is illustrated in Table 1. The
tabulated values show that the presence of the catheter decreases the dispersion
coefficient and also increase in the size of catheter further decreases the dispersion
coefficient in both Newtonian (τy = 0) and non-Newtonian (τy ̸= 0) cases. In the
case of Newtonian fluid, the insertion of catheter of size 0.1 in a normal artery
decreases the dispersion coefficient by 79% where as in the case of Casson fluid
(τy = 0.05) this decrease is 88%. The effect of yield stress is seen to decrease
the dispersion coefficient in both the normal artery as well as the catheterized
artery. In the case of normal artery (k = 0) the decrease in dispersion coefficient
is 98% when τy increases from 0 (Newtonian) to 0.05 (Casson), where in the
case of catheterized artery (size 0.1) the decrease in dispersion coefficient is
80%. Hence, one can see that the combined influence of both non-Newtonian
nature and presence of the catheter significantly inhibits the dispersion process.
We see that an increase in the frequency parameter helps the dispersion of the
dye. The axial variation of concentration for the variation of other parameters is
discussed through Figs. 6 – 11, which provides the understanding of dispersion
of the dye along the axial direction, which is very much essential.

τy = 0 τy = 0.02 τy = 0.05
k = 0.0 9.539×10−4 4.017×10−4 2.145×10−4

k = 0.1 1.980×10−4 4.847×10−5 2.476×10−5

k = 0.2 4.117×10−5 1.451×10−5 6.715×10−6

k = 0.3 1.277×10−5 3.314×10−6 1.097×10−6

Table 1. Variation of dispersion coefficient K2 with k and τy when α = 0.05,
e = 0.2, t = 1

6. Conclusion

Dispersion of solute in an annulus in oscillatory flow with flowing fluid is
modelled as Casson fluid is studied using the generalized dispersion model. It
is found that the dispersion coefficient in oscillatory Casson fluid flow in an
annulus is a function of the frequency parameter, Schmidt number, fluctuating
pressure component besides its dependency on time, annular gap and yield stress
of the fluid. The mean concentration expression is derived in terms of these two
coefficients. It is observed that the dispersion in oscillatory flow in Casson fluid
flow inherently different from the steady flow, which is due to change in the
plug flow region during the cycle of oscillations. It can be inferred that the
decrease in annular gap inhibits the dispersion process, which could be due to
decrease in annular gap leads to decrease in the flow and hence causes the lower
mass transfer rate. It is observed that the dispersion coefficient decreases from
2.145× 10−4 to 2.476× 10−5 in the case Casson fluid (τy = 0.05) from the case
of tube to annulus with inner cylinder radius 0.1 i.e is about 88% of reduction in
the dispersion coefficient. The results of this study are analysed to understand
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the role played by the size of the catheter in a catheterized artery. It can be
inferred that the presence of catheter and an increase in the catheter size inhibit
the dispersion process.
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