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Abstract

In this paper we introduced a new score generating function for the rank dispersion
function in a multiple linear model. Based on the new score function, we derived the

asymptotic relative efficiency, ARE(11, rs), of our score function with respect to the
Wilcoxon scores for the generalized F distributions which show very flexible
distributions with a variety of shape and tail behaviors. We thoroughly explored the
selection of 7 and s of our new score function that provides improvement over the
Wilcoxon scores.
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1. Introduction

Recently Ozturk and Hettmansperger(1996) and Ozturk(1999) derived the robust estimates of
location and scale parameters by minimizing distance criterion function. Ahmad(1996)
developed a new class of Mann-Whitney~Wilcoxon type test statistics which only considered
the one side tail probabilities of the underlying distribution. Ozturk and Hettmansperger(1997)
considered the distribution functions reflecting both right and left tail probabilities.
Ozturk(2001) considered another class of Mann-Whitney-Wilcoxon test statistics by
incorporating both right and left tail behavior of the underlying distributions. Further Choi
and Ozturk(2002) introduced a new score generating function for the rank dispersion function
in a multiple linear regression model which improved the efficiency for many distributions by
comparing the score function with the 7th and sth power of the tail probabilities of the
underlying probability distributions. Choi(2004) explored efficiency comparison over the
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Wilcoxon scores under the asymmetric distributions in essence.

Now the main purpose of this paper is to extend the Hettmansperger and McKean(1998)
and Choi and Ozturk(2002)’s concept, where the distribution function reflects on both right
and left tail probabilities and produces robust estimators with high efficiency, into the rank
estimate of regression parameters in a linear model. In addition, this paper is to extend
Choi(2004)’s result in practice since the generalized F distributions are more realistic and
applicable with respect to the diversified scheme of distributions.

In Section 2, we propose our score function based on the #th and sth power in
considering both right and left tail probabilities. We define the dispersion function D,'S(B)
based on our 7th and sth power score function. In Section 3, we define the asymptotic
relative efficiency, ARE(11, rs), of our score function with respect to the Wilcoxon scores. In

Section 4, we compare the efficiency of rank estimator based on our proposed score
generating function with the efficiency of rank estimator based on the Wilcoxon scores for the

generalized F distributions. We thoroughly explore the selection of 7 and s that provides
improvement over the Wilcoxon scores.

2. Score Function

Consider the linear regression model,
vi=atxB+e

for 1=1,--,n, where x; and B are px1 vectors of explanatory variables and unknown
regression parameters respectively and e; is a random variable with density f and

distribution function F'.
Jaeckel’s(1972) general rank dispersion function can be defined as

D(B) = 3 (3~ xB) alR(y;— x8)],

where a set of scores is generated by a(i)= ¢(i/(n+1)), and the score generating
function ¢(%) is a nondecreasing, square integrable, bounded function on (0,1) and satisfies
the conditions [} ¢(u)du =0 and [} ¢*(u)du = 1.

Now let

_ 1 | sy 1
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a(i) = \/(im [(nil)’_ 7-1§-1 - (1_ n-f—l)s+ s-ll-l ]’
I'(r+1)I'(s+1)

z + s + 2 -
Cr+Dr+1)?  @s+1D(s+1)? 1 (r+D(s+1) I'(r+s+2)

where W, = 2
7,85

Define the dispersion function

D, (B) =271 e;alR(e;)],

where R(e;) denotes the rank of e;= y;— x;8. Then B can be estimated by the rank

- —_ . - . - . . .
estimator B,  which minimizes the dispersion function.

3. Asymptotic Relative Efficiencies

In this section, we compare the efficiency of the proposed score function with respect to the

Wilcoxon scores. The asymptotic variance of the rank estimate of A based on the Wilcoxon

scores is denoted here as v(ﬁa). Then from Theorem 2 of Choi and Ozturk(2002), the

asymptotic relative efficiency of our estimator ﬁ:s with respect to ﬁ:l is expressed as

—~ 1/p
ARE(11, »s) = ( ll:gg’\‘;ll) = %112[ff2(x) dx]z, 1)
1,1 x

where 7, = (f[rF’_l(t)+s(l—F(t))s_l]fz(t) a’t)z-

The asymptotic relative efficiencies ARE(11, rs), where ARE(ll, »s) < 1 implies that the
efficlency of our score function is superior to that of the Wilcoxon scores, are discussed
below for several generalized F distributions. Let F be a random variable having an
F 5, 2m, distribution with degrees of freedoms 2m; and 2m, . Then T = log(F) is said

to have the generalized F distribution [ GF(2m,, 2m,)] with degrees of freedoms 2m, and

2my.

Lemma 1. The generalized F distribution, GF(2m;, 2m,), with degrees of freedoms 2m;
and 2m, has the following relationship with the ordinary F 2m,, 2m, distribution with degrees
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of freedoms 2m, and 2m, .

GF(zml, 2m2) = Fzmhzmz(et)

Proof. First consider a random variable F having the ordinary F ,, , distribution with m

and #n degrees of freedoms. Then the probability density function can be written as

_ I'(m+n)[2)(m/n)"? F mi2-1
fm,n(F) - F(m/Z)F(n/Z) (1+(7n/n)F) (m+n)/2 - (2)

Let x =log(F), m = 2m, and n = 2m,. By using integration by parts and substituting

F=¢" and dF = e¢*dx into (2), we can easily show that

Fo gy = LCmitmy) Cmyfmg) e ™
2m,y, 2m, F(ml)F(mZ) [1+(m1/m2) ex] my+ my
Therefore we can derive that GF(2m,, 2m,) = F,, ,, ().

Lemma 2. The asymptotic relative efficiency of our estimator with respect to the Wilcoxon
scores for the generalized F distribution with degrees of freedoms 2m; and 2m, is
expressed as

w,, 12T (m+m)*Q2m)I'%2m,)

T T'*(m)I'*(my) I'*(2m,+2m,)

ARE(11, 7s) =

Proof. By using Lemma 1, it can be proven that for the Wilcoxon scores at the generalized

F distribution

x2m,

L1+ @my) 2my) ]

_ I"(m+m)(m/m)m‘2
-ve || FOmy) Tmg) |

2m; +2m,

m 12
= [ I'(my+my) (my/my) ] I'Qm) I'2m,)
’ I(my) I'Comsy) ' 2m,+2my) (my/my) 2m

V12 I 2(my+ my) T'(2m)) I'(2my)
I 2(m) T *(my) T (2m, +2m,)
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Therefore when substituting the above result into (1), ARE(11, »s) for the generalized F
distribution can be obtained straightforwardly.

4. Efficiency Comparisons

In this section, we evaluate the efficiency of our score function with respect to the
Wilcoxon scores for the generalized F distribution. In essence, we explore the selection of
v and s that provides improvement over the Wilcoxon scores. For comparison purposes,
ARE(11, »s) provided in Lemma 2 are calculated for right-skewed, left-skewed, light-tailed
and heavy-tailed distributions respectively. We evaluated ARE(11, »s) for several values of
7,s=01(3)0.1. Figures depict a perspective plat of ARE(11, s} as a function of 7 and s.

The generalized F distribution is a very flexible distribution that covers a variety of shape
and tail behaviors. It produces symmetric distributions for m;=m, , positively skewed
distributions for m; > m, , and negatively skewed distributions for m; < my . Further It
produces heavy-tailed distributions for m;, my;< 1 , whereas it produces light-tailed
distributions for my, m9 > 1 . McKean and Sievers(1989) adaptively estimated m; and m,
to reflect on the shape of the underlying probability models. Namely the distribution of F is
Weibull if (my,m,)— (1, 0), lognormal if (m,, m,) — (0,0), the generalized gamma if

(m,, my) — (o0, 1).

20
Negatively Skewed Light Tailed
1.5 — \ /
c3 ce
ma2 1.0
c4 ci
o / \
0.0 Heawvy Tailed Positively Skewed
| | | !
0.0 as 1.0 1.5 2.0
mi

Plot 1. Schematic of the four classes, C1-C4, of the GF(2m,, 2m,) distributions
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In general this class of the generalized F distribution can be conveniently divided into the
four subclasses Cl through C4 which are represented by the four quadrants with center
(m;,my) =(1,1) as depicted in Plot 1. When m;=my,=1, the generalized F distribution,
the point (1,1) in this plot, corresponds to the logistic distribution, GF(2, 2), and forms a
natural center point for the diversified distributions. The distributions in Cl are suitable for
positively skewed distributions with heavy right tails and moderate left tails, whereas the
distributions in C3 are suitable for negatively skewed distributions with heavy left tails and
moderate right tails. In addition the distributions in C2 are suitable for light-tailed
distributions, whereas the distributions in C4 are suitable for heavy-tailed distributions.

4.1 Right-Skewed Generalized F Distribution

Figure 1 and Table 1 show the pdf and cdf and asymptotic relative efficiency for
right-skewed distributions such as GF(3, 0.3) and GF(4, 0.2). The computations were
made for all »,s=01(3)0.1, but we only report the selected values.

pdf cdf ARE(11, rs)

(a) GF(3, 0.3) — skewness= 1.857

pdf cdf ARE(1l. rs)

(b) GF(4, 0.2) — skewness= 1.913

Figure 1. Class C1 distribution, the right-skewed distribution
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Table 1. ARE(l], rs) for the right-skewed distribution
T 0.1 05 09 1 2 3
distribution 1 2 3 1 2 3 1 2 3 1 2 3 2 3 2 3

GF(@3, 03) | 934 574 477 872 614 530 .961 672 576 1.000 .694 593 1.000 824 1.289 1.032| 1.857
GF(4, 02) | 833 460 334 771 502 391 937 5% 459 1.000 627 481 1000 716 1250 .852| 1913

skewness

The results of Figure 1 and Table 1 can be summarized as follows. For the right-skewed
distributions, they indicate that if #<1 and s> 1, U(E:s) is much smaller than v(ﬁa).
In particular, for a strongly right-skewed distribution, the proposed score generating function
provides improved efficiency over the Wilcoxon score for the small values of 7 and large
values of s. Thus for strongly right-skewed distributions with high positive skewness we

select = 0.1 and as large an s as possible.

4.2 Left-Skewed Generalized F' Distribution

Figure 2 and Table 2 show the pdf and cdf and asymptotic relative efficiency for
left-skewed distributions such as GF (0.5, 6) and GF(0.2, 4).

pdf cdf ARE(11, rs)

o sa s to tw o0 e tw

-(a) GF(0.5, 6) — skewness= -1.751

pdf cdf ARE(11, rs)

(b) GF(0.2, 4) — skewness= -1.913

Figure 2. Class C3 distribution, the left-skewed distribution
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Table 2. ARE(11, rs) for the left-skewed distribution

r 1 2 3 1 2 3 1 2 3 1 2 3 2 3 2 3
distribution 0.1 05 0.9 1 2 3

skewness

GF(05, 6) | .808 448 325 754 493 383 934 593 456 1.000 .625 478 1.000 .712 1.244 843 | -1.751
GF(02. 4) | 674 348 225 634 .392 278 903 524 362 1.000 566 .387 1.000 611 1173 675 | -1913

As we compare the left-skewed distributions with the right-skewed distributions, similar
results can be observed. Figure 2 and Table 2 show that our procedure has higher efficiency

than the Wilcoxon scores if »>1 and s<1. We should choose as large an 7» as possible
and as small an s as possible. Thus, for strongly left-skewed distributions with low

negative skewness we select s= 0.1 and as large an 7 as possible.

4.3 Light-Tailed Generalized F' Distribution

Figure 3 and Table 3 show the pdf and cdf and asymptotic relative efficiency for
light-tailed distributions such as GF(3, 3) and GF(4, 8).

ARE(11, rs)

pdf cdf

(a) GF(3, 3) — kurtosis= 3.806

odf cdf ARE(11, rs)

(b) GF(4, 8) — kurtosis= 3.625

Figure 3. Class C2 distribution, the light-tailed distribution
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Table 3. ARE(11, rs) for the light-tailed distribution

r 15 2 2.5 3
distribution 0 1 2 0 1 2 0 1 2 0 1 2
Logistic 816 .895 1.063 .765 .833 1.000 .784 856 .994 .854 .885 1.025

GF(3, 3) 798 884 1.080 .730 .833 1.000 .729 823 979 772 839 996 | 3.806
GF(4, 8) 733 844 1.145 616 .758 1.000 565 .714 .928 550 697 900 | 3.625

kurtosis

Figure 3 and Table 3 show that our estimator performs better than Wilcoxon score rank
estimator for 1<{#»<3 and 0<s<2. Especially our procedure has best efficiency for » =3
and s =0 with low kurtosis. Some of the selected values of ARE(1l, »s) are given in Table
3 because of the space limitation.

4.4 Heavy-Tailed Generalized F Distribution

Figure 4 and Table 4 show the pdf and cdf and asymptotic relative efficiency for
heavy-tailed distributions such as GF(1, 1) and GF(1, 0.6).

ARE(11, rs)

pdf cdf

(a) GF(1, 1) — kurtosis= 5.000

ARE(11, rs)
pdf cdf

(b) GF(1, 0.6) — kurtosis= 5.848

Figure 4. Class C4 distribution, the heavy-tailed distribution
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Table 4. ARE(11, rs) for the heavy-tailed distribution

ns 1.1 13 15 17 19 kurtosis
distribution
Cauchy 989 978 976 981 992
GF(1, 1) 978 953 948 958 982 5.000
GF(1, 0.6) 976 949 943 954 981 5.848

From Figure 4 and Table 4, we observe that for heavy-tailed distributions, values of

1< 7,5 <2 vield higher asymptotic relative efficiencies than the Wilcoxon scores. In
particular, when 7 and s are 1.5, v(ﬁ:s) is the minimum among all 7»,s=0(3)0.1
that we computed. Thus for long heavy-tailed distributions with high kurtosis, we select

7,s =1.5.

5. Selection of » and s

We preliminarily suggest using the Wilcoxon scores to get residuals to calculate the size of
skewness of the underlying probability model. Next in order to find a defining association

between the degree of skewness, denoted by Skew, and the selection of m; and m, for the

generalized F distribution, the following prediction fits are suggested. For the positive

skewness,
my = 1.2 Skew— 0.3, my = 0.5—0.2 Skew
and for the negative skewness,

m, = 0.5—0.2|Skew|, my = 1.2|Skew| —0.3.

Further we finally fit a regression model to predict the optimal values of » and s for a

given values of skewness. For the positive skewness,
r=1-— 0.5 Skew, s =1+ 0.95 Skew
and for the negative skewness,

r= 14 0.95|Skew|, s=1-—0.5|Skew]|.
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Numerical Example. Consider the multiple regression model in Example 56 of Bowerman
et al.(1986, pl62) for sales associated with income and space. Residuals using the Wilcoxon

scores are available in the command RREGRESS in Minitab with normal probability plot and
box plot as follows.

12509 01744 49970 35353 21116
-2.7949 16.8501 -29724 -2.7951 -1.7339
-1.1345 53730 -3.0123 35412 -1.5658
-1.2509 -1.4191 -5.0735 -12.3120 2.7491

Normal Probability Plot for residual
WL Estimates

(1) Then we obtain Skew = (.888 by using the UNIVARIATE procedure in SAS for the
Wilcoxon residuals, for which we reject the null hypothesis in favor of the weakly
right-skewed alternatives. (2) In addition from the formula provided, we find that m;=0.8

and my,=0.3. It makes us estimate the type of the underlying distribution,
GF(2m |,2m ;) = GF(1.6,0.6). (3) We also predict the values of = (0.6 and s=1.8 even
for a given value of mild skewness. (4) Finally the asymptotic relative efficiency of the

proposed scores with respect to the Wilcoxon scores indicates that ARE(11,7s)=0.935 for
r=0.6, s=1.8 and GF(1.6,0.6) correspondingly.

6. Conclusions

In this paper we derived the asymptotic relative efficiency, ARE(1l, rs), of our score
function with respect to the Wilcoxon scores for the generalized F distributions. We
thoroughly explored the selection of #» and s of our new score function that provides
improvement over the Wilcoxon scores. The result for asymmetric distributions which we
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encounter in practice commonly can be summarized as follows. We select <1, s>1 for
right skewed distribution and #> 1, s<1 for left skewed distributions. In addition, we
select =3, s =0 for light tailed distribution and 7, s =1.5 for heavy tailed distributions.
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