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Abstract
We frequently encounter outcomes of count that have extra variation. This paper considers several alternative

models for overdispersed count responses such as a quasi-Poisson model, zero-inflated Poisson model and a
negative binomial model with a special focus on a generalized linear mixed model. We also explain various
goodness-of-fit criteria by discussing their appropriateness of applicability and cautions on misuses according to
the patterns of response categories. The overdispersion models for counts data have been explained through two
examples with different response patterns.

Keywords: Clustered data, overdispersion, quasi-likelihood, dispersion parameter, zero-inflated
Poisson, negative binomial, generalized linear mixed model.

1. Introduction

Poisson distribution is the standard model for count responses, for which the variance of responses is
expected to equal mean. But violations in the assumptions characterizing a Poisson distribution may
lead to the presence of extra variation in the analysis of counts and rates in longitudinal studies. There
may exist a dependence between the elemental units in a study where experimental units are clusters.
When responses are observed in clusters they frequently exhibit extra variation than the permitted
variance of the assumed model. We often encounter this extra variation in a real data of count or
binomial responses. Overdispersion may sometimes be observed when the residual variation obtained
is greater than which can be attributed to the sampling variation assumed by the model.

McCullagh and Nelder (1989) showed that overdispersion is not uncommon in practice. Overdis-
persion should be considered deliberately in modelling count responses. The ordinary Poisson general
linear model(GLM) cannot be fitted well in the presence of overdispersion. In the analysis of clus-
tered or longitudinal data the generalized linear mixed model(GLMM) and the generalized estimating
equations(GEE) approaches are most popular. The GLMM incorporates random subject effects into
a GLM by allowing subjects variability; however, the GEE method solves equations that include the
correlation structure of repeated responses to estimate regression coefficients.

Thall and Vail (1990) discussed covariance models for longitudinal count data with overdisper-
sion, and Jowaheer and Sutradhar (2002) applied a GEE method to analyze longitudinal count data;
however, Sutradhar et al. (2007) suggested three kinds of mixture models to account for the overdis-
persion in binomial data. The beta-binomial, the finite mixture, and the zero-inflated binomial model
all belong to the same class of mixture models. They suggested a chi-squared type goodness-of-fit
statistic to test the assumed null model against the alternative three kinds of models without con-
sidering covariate variables. Recently, Morel and Neerchal (2012) have extensively studied various
overdispersion models using SAS.
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It is necessary to assess the goodness-of-fit of fitted model. There are many criteria such as the
chi-squared statistic based on Pearson residuals, and the deviance using the likelihood based statis-
tics. Furthermore, Pan and Lin (2005) suggested test statistics using cumulative sums of residuals
in GLMM. Recently, Xu and Lu (2009) suggested a nonparametric Monte Carlo test based on the
cumulative sums of residuals for the longitudinal count data with overdispersion.

This paper considers several overdispersion models for count data in the framework of mixture
models; the quasi-Poisson model, the zero-inflated Poisson(ZIP) model, the Poisson-normal GLMM,
and the negative binomial(NB) model. The NB model and the Poisson-normal GLMM belong to the
GLMM family in the sense that Poisson responses are mixed with random effects distribution. In
Section 2, we review the quasi-likelihood method for count responses by allowing variance function
to include a dispersion parameter. The commonly used goodness-of-fit criteria such as chi-squared
statistic, deviance statistic, and Akaike information criterion(AIC) have been discussed in the respect
of appropriateness or misuses according to the patterns of response categories. As a motivation for
overdispersion, we introduce a real data which is not well fitted by the ordinary Poisson GLM. Section
3 discusses several overdispersion models in the context of mixture models. The NB model and the
Poisson-normal GLMM are the two competing models for the overdispersion of count data. The
NB model also belongs to a class of GLMM but with nonnormal random effects in contrast to the
Poisson-normal GLMM which has normal random effects. In Section 4 the overdispersion models
will be compared in detail through two examples of different response patterns, the one is contingency
table data, and the other is ungrouped count responses. In particular, we compare the Poisson-normal
GLMM with the NB model to emphasize the normality assumption of random effects. Finally we
summarize the paper with comments on future research areas.

2. Quasi-Poisson Model for Counts

2.1. Quasi-likelihood function

Let Y denote count response and x1, x2, . . . , xp be p covariate variables. Given a data (yi, xxxi) with
xxxi = (xi0, xi1, xi2, . . . , xip)′, where xi0 = 1, and i = 1, 2, . . . , n, the Poisson GLM for count responses
is represented in terms of the log link and the mean µi = E(Y |xxxi) as

log(µi) = xxx′iβββ, (2.1)

where βββ = (β0, β1, . . . , βp)′. We simply let ηi = xxx′iβββ be the linear predictor of (2.1). Before we
introduce the quasi-likelihood method that allows for the extra variation we consider an exponential
density for Y

f (y, θ, ϕ) = exp
[
yθ − b(θ)

a(ϕ)
+ c(y, ϕ)

]
.

The relationships µ = E(Y) = b′(θ), Var(Y) = a(ϕ)b′′(θ) hold in general. Thus b(θ) determines the
first and second moments of Y . The log-likelihood function can be written as

L(β) =
n∑

i=1

yiθi − b(θi)
a(ϕ)

+

n∑
i=1

c(yi, ϕ). (2.2)

The L(βββ) depends on β through the assumed model (2.1). The maximum likelihood estimator (MLE)
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of βββ, denoted as β̂ββ, can be solved from the score equations

∂L(βββ)
∂β j

=

n∑
i=1

(yi − µi)xi j

Var(Yi)
∂µi

∂ηi
= 0, j = 0, 1, . . . , p. (2.3)

We note that the score equations depend on the distribution of Yi only through µi and Var(Yi).
The quasi-likelihood method simply uses the relationship of a mean and variance function instead
of a Poisson assumption of Yi. The variance itself also depends on the mean through a particular
functional relationship Var(Yi) = v(µi), where v(µi) is a function of µi. In particular, for the Poisson
GLM v(µi) = µi. However, in the quasi-Poisson model the Var(Yi) replaced by a certain variance
function v(µi) = ϕµi multiplied by a dispersion parameter to account for the extra variation of count
responses. When ϕ > 1 it means overdispersion. The quasi-likelihood MLE β̂i from the quasi-score
equations of (2.3) with Var(Yi) = ϕµi coincides with that of ordinary Poisson GLM but has a larger
variance multiplied by ϕ̂. We may refer to Wedderburn (1974) for detailed discussions on the quasi-
likelihood method.

2.2. Goodness-of-fit criteria

By substituting the ML estimator β̂ββ into (2.1) we obtain the estimated mean µ̂i = exp(xxx′iβ̂ββ). To assess
the goodness-of-fit(GOF) of a fitted model there are several statistics such as a Pearson chi-squared
like statistic, deviance, and AIC measures. Firstly, the Pearson chi-squared statistic is the sum of

squares of Pearson residuals (yi − µ̂i)/
√

V̂ar(Yi) given by

X2 =

n∑
i=1

(yi − µ̂i)2

V̂ar(Yi)
. (2.4)

The X2 of the quasi-Poisson model is given by multiplying 1/ϕ̂ to the chi-squared statistic of
ordinary Poisson GLM because V̂ar(Yi) = ϕ̂µ̂i holds for the quasi-likelihood method. The X2 has an
approximate chi-squared distribution for large {µ̂i}. But we should be cautious on using the X2 statistic
when µ̂i’s are small compared to 5, as discussed by Wood (2002). The deviance statistic, denoted by
D(yyy; µ̂µµ), is formally defined as the difference of the log-likelihood between the saturated model and
the fitted model. The deviance statistic is

D(yyy; µ̂µµ) = 2
n∑

i=1

{
yi log

(
yi

µ̂ i

)
− (yi − µ̂i)

}
. (2.5)

Deviance D(yyy; µ̂µµ) has also an approximate chi-squared distribution for large {µ̂i}. The AIC measure is
defined to be −2L(β̂ββ) + 2r, where r is the number of estimated parameters.

Before we discuss other overdispersion models we briefly explain the lack-of-fit of Poisson GLM
through an example. Table 1 shows responses of 1308 subjects by race about the number of homicide
victims they have known within the past 12 months. The data comes from Agresti (2002), and orig-
inally given in a General Social Survey of 1990 by National Opinion Research Center. The sample
mean of 159 blacks is 0.522 with a variance of 1.150, and the sample mean of 1149 whites is 0.092
with a variance of 0.155. The sample variances are larger than the sample means and denote extra
variations than that expected under Poisson distribution. We consider a Poisson GLM

log(µi) = β0 + β1xi,
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Table 1: Number of victims known in past year, by race, with fit of Poisson GLM

Response Data Poisson GLM
Black White Black White

0 119 1070 94.3 1047.7
1 16 60 49.2 96.7
2 12 14 12.9 4.5
3 7 4 2.2 0.1
4 3 0 0.3 0
5 2 0 0 0
6 0 1 0 0

Total 159 1149 159 1149

where xi denotes race for subject i taking values 1 or 0 according to black or white. The MLEs of
Poisson GLM are β̂0 = −2.38 (SE = 0.097), β̂1 = 1.73 (SE = 0.147). However, ϕ̂ = 1.75 for the quasi-
Poisson model and denotes overdispersion. The regression coefficients are the same for the quasi-
Poisson model but their standard errors are multiplied by

√
ϕ̂ =

√
1.75 to those of ordinary Poisson

GLM. The expected frequencies of Poisson GLM greatly deviate from the observed frequencies, in
particular at response count 0 and 1. The given data has excessively many 0’s, and this type of excess
of 0 counts can be improved by fitting the ZIP model which will be explained in later sections. The
estimated means is µ̂i = exp(−2.38+1.73) = 0.522 for blacks and exp(−2.38) = 0.092 for whites. The
X2 = 2279.9 with degrees of freedom 1306 for the assumed Poisson GLM. The GOF of quasi-Poisson
has been improved to be X2/ϕ̂ = 1302.8 with the same degrees of freedom. However, we need to be
cautious on using this goodness-of-fit measure since the approximate chi-squared distribution is not
guaranteed for small estimated means such as 0.522 and 0.092.

3. Mixture Models for Overdispersed Counts

3.1. Zero-inflated Poisson model

When there occurs excess of zeroes it can be modelled by the ZIP distribution. The count response Y
has a probability distribution mixed with degenerate distribution at zero and the Poisson distribution
with mean µ; therefore, the probability density of Y can be written as

f (y) = ωI(y = 0) + (1 − ω)
e−µµy

y!
, y = 0, 1, 2, . . . , 0 < ω < 1,

where I(y = 0) is an indicator and ω is a weight at y = 0.
We can easily compute the mean and variance of ZIP distribution as

E(Y) = (1 − ω)µ, Var(Y) = (1 − ω)
(
µ + ωµ2

)
.

Therefore Var(Y) > E(Y) and means that the ZIP distribution is overdispersed in the sense that the
variance is larger than its mean. But the variance is smaller than the usual Poisson distribution having
variance µ. If ω approximates to 0 then the ZIP is close to the usual Poisson model. We comment
that the ω can be estimated using gamlss library in R software by additional modeling of ω using
logit link. The ZIP has been introduced as one candidate model for overdispersed counts data with
an extraordinarily large proportion of zeros; however, we should be cautious that it cannot be used
for the overdispersed count outcomes that do not have an excess of zeros, for which the ZIP provides
similar results with the ordinary Poisson GLM.
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3.2. Poisson-normal GLMM

In this section yi j be responses within subject i, where j = 1, 2, . . . , ti and i = 1, 2, . . . , n. When cluster
sizes all equal one, that is, ti ≡ 1 for all clusters, the yi j coincides with yi defined before. Hence to
be consistent with notations we use yi instead of yi j. Given a subject effect uuui we assume that count
responses are Poisson with mean µi = E(yi|uuui). Furthermore the subject effects uuui is usually regarded
as independent random variables compared to the fixed coefficient βββ. The GLMM for count responses
is defined as

log(µi) = xxx′iβββ + zzz′iuuui, (3.1)

where zzzi is a q dimensional covariate vector related with the random effects uuui. To simplify the problem
we only consider the random intercept model by taking zzzi = 1, that is, the Poisson-normal GLMM is
the form

log(µi) = xxx′iβββ + ui, (3.2)

where ui is assumed to be N(0, σ2). Under the Poisson-normal GLMM the likelihood function L(θθθ)
with θθθ = (βββ′, σ)′ is obtained by integrating out ui with respect to the density of random effects.

L(θθθ) =
n∏

i=1

∫
f (yi|ui) f (ui) dui, (3.3)

where f (yi|ui) is the Poisson density with mean µi characterized by (3.2), and f (ui) is a normal den-
sity with mean 0 and variance σ2. Numerical approximation of (3.3) and then maximization steps are
needed to find the MLEs. The adaptive Gaussian quadrature or Laplacian method is commonly ap-
plied to approximate the marginal integral numerically. The random effects ui are usually predicted by
the empirical Bayes method. Under some regularity conditions, the MLE θ̂θθ satisfies

√
n-consistency

and the asymptotic normality. We may refer to Breslow and Clayton (1993) for details of inference
under GLMM.

Now we are to discuss the Poisson-normal GLMM in the respect of overdispersion. Firstly, the
marginal mean of Yi can be written as

E(Yi) =
∫

exp
(
xxx′iβββ + ui

)
f (ui) dui. (3.4)

From the moment generating function of normal density we obtain E(Yi) = exp(xxx′iβββ +σ
2/2). Next, to

derive the marginal variance of Yi we use the relationship

Var(Yi) = E[Var(Yi|ui)] + Var[E(Yi|ui)]. (3.5)

Since the conditional distribution of Yi given ui has been assumed to be Poisson with mean µi given by
(3.2), therefore E(Yi|ui) = Var(Yi|ui) = exxx′iβββeui . Similarly to finding marginal mean we finally obtain
the relationship

Var(Yi) = E(Yi) + {E(Yi)}2
(
eσ

2 − 1
)
. (3.6)

Clearly, Var(Yi) > E(Yi), and σ denotes the amount of overdispersion in GLMM.
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3.3. Negative binomial model

The most popular model to account for overdispersion on count responses is negative binomial distri-
bution. The NB distribution is usually interpreted as the distribution of the number of failures before
a pre-determined number of successes occur in a sequence of Bernoulli trials. However, in the context
of overdispersion, the NB distribution can be applied to account for extra variation of count responses.
To formulation the NB distribution as a mixture model we assume that the conditional distribution of
count responses is Poisson. Further, the mean rates vary according to a gamma distribution. It turns
out that the unconditional distribution of counts is NB distribution. Formally we let Yi be Poisson
with mean µiγi given γi, and further assume that the γi follows gamma distribution with shape κ and
scale 1/κ for κ > 0. As 1/κ → 0 the gamma distribution has Var(γi) = 1/κ → 0, and it converges to
a degenerate distribution at µi. In this case the NB distribution converges to the Poisson distribution
with mean µi. The marginal density of Yi can be derived as

f (y) =
Γ(y + κ)
Γ(κ)Γ(y + 1)

(
κ

µi + κ

)κ (
1 − κ

µi + κ

)y

, y = 0, 1, 2, . . . .

Since the gamma distribution is a conjugate family of Poisson distribution the marginal mean and
variance of NB distribution can be easily obtained by using the variance relationship (3.5). Thus we
find E(Yi) = µi and

Var(Yi) = µi +
µ2

i

κ
. (3.7)

The greater 1/κ, the greater the overdispersion compared to the Poisson distribution. The index 1/κ
is called the dispersion parameter. From (3.6) and (3.7) we see the same form for the variances of
Poisson-normal GLMM and NB model.

We next discuss the NB model in the context of GLMM. The Poisson-gamma mixture density can
be written in GLMM by taking µi = exp(xxx′iβββ) and ui = log(γi) in (3.2). In this case the random effects
ui is nonnormal but exp(ui) is gamma distributed as mentioned before. This means that NB model can
be formulated as GLMM with a nonnormal random effect. Most of the commonly used software to fit
GLMM allows only normal distribution for the random effect, and therefore Poisson-gamma GLMM
cannot be fitted in a routine way without writing special programming codes and restricts the use of
Poisson-gamma GLMM of NB model. But NB model can alternatively be fitted using ordinary GLM
software by regarding the NB distribution for count responses. Until now we discussed three kinds of
overdispersion models with the GOF criteria. The ZIP model can be used to overcome overdispersion
due to excess of zeros but useless for other cause of overdispersion; however, the NB model and
GLMM can generally be used for overdispersed counts data. The GLMM is computationally more
intensive than the NB model, and furthermore most statistical packages fit GLMM under normal
assumption for random effects. The violation of normality may cause inferential problems for the
variance component of random effects. The NB model can be fitted simply without any restrictions
but the choice between two competing overdispersion models should be considered in several respects
that include GOF criteria.

4. Implementation and Examples

In this section we further explain the overdispersion models through two kinds of real data with appro-
priate GOF criteria. Various software can fit the models discussed for overdispersed count data. For
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Table 2: Number of victims known in past year, by race, predicted by mixture models

Responses Data ZIP NB GLMM
Black White Black White Black White Black White

0 119 1070 128.3 1059.3 122.8 1064.9 119.2 1101.7
1 16 60 10.8 72.3 17.9 67.5 24.6 40.9
2 12 14 9.8 15 7.8 12.7 7.8 4.2
3 7 4 6 2.1 4.1 2.9 3.8 1.18
4 3 0 2.7 0.2 2.4 0.7 1.9 0.45
5 2 0 1 0 1.4 0.2 1 0.22
6 0 1 0.3 0 0.9 0.1 0.4 0.12

X2 (df) 965.3 (1305) 1424 (1305) 278.63 (1305)
D(y; µ̂) (df) 999.9 (1305) 412.6 (1305) 728.1 (1305)

AIC 1005.9 1001.8 734.1

Table 3: Number of victims collapsed over responses and race in Table 2
Category Observed Poisson ZIP NB GLMM

0 1189 1142 1187.6 1187.7 1220.9
1 76 145.9 83.1 85.4 65.5
2 26 17.4 24.8 20.5 12
3 11 2.3 8.1 7 5

4+ 6 0.3 6.8 10.9 4.1
GOF (df) 180.9 (3) 1.80 (2) 7.0 (2) 27.2 (2)
P-value 0.000 0.407 0.030 0.000

example, NLMIXED in SAS and glmmML in R can be used to fit Poisson-normal GLMM; however,
GENMOD in SAS and glm.nb in R are useful to fit NB model. In these examples we used R packages
mentioned above to obtain the result.

Example 1. We revisit the data of Table 1 to overcome the overdispersion problems in count re-
sponses. The sample mean of blacks is 0.522 with a variance of 1.150, and the sample mean of whites
is 0.092 with a variance of 0.155 as noted before. This data set also has excess of zeros with proportion
of 0.909; subsequently, the ZIP model can be a natural selection. Table 2 summarizes the expected
count responses predicted by the ZIP model, NB model, and Poisson-normal GLMM with their assess-
ment criteria. The ordinary Poisson GLM was already fitted in Section 2. When we fit the ZIP model
the estimates are β̂0 = −0.88 (SE = 0.175), β̂1 = 1.48 (SE = 0.199) and ω̂ = 0.77 (SE = 0.178). But
under NB model β̂0 = −2.38 (SE = 0.117), β̂1 = 1.73 (SE = 0.239), and κ = 4.94 (SE = 0.041). The
estimated coefficients of the NB model are similar to the ordinary Poisson GLM of Section 2; however,
when Poisson-normal GLMM are fitted we obtain β̂0 = −3.69 (SE = 0.244), β̂1 = 1.90 (SE = 0.246)
and σ̂ = 1.63 (SE = 0.155).

The goodness-of-fit of various models can be assessed by the usual Pearson chi-squared statistic,
denoted as GOF in Table 3 that compares the observed frequencies and the expected frequencies of
grouped data given by contingency table. Original response categories 4 through 6 are combined so
that the expected frequencies are properly large compared to 5. Table 3 shows the expected frequen-
cies merged with respect to race and also the P-values of four kinds of models, among which the ZIP
model is the best and the NB model is the next alternative; however, the ordinary Poisson GLM and
the Poisson-normal GLMM do not fit. We doubt the violation of normality of random effects in the fit
of Poisson-normal GLMM as shown in the Q-Q plot of Figure 1.

Example 2. As a second example of overdispersed count responses Figure 2 shows a time series
plot of 534 monthly counts of mumps cases in New York City, 1928–1972 (Waagepetersen, 2006).
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Figure 1: Q-Q plot of predicted random effects

In Figure 2 we see a pronounced seasonal variation that varies from the smallest count of 20 to the
maximum count of 1956. The graph of the autocorrelation function, omitted for space, denotes strong
autocorrelations with the significant periodic variation of mumps. The mean and variance of mumps
is 487.7 and 147721.5, respectively, thus there exists an expected large extra variation versus the
variance of the Poisson distribution.

We first consider an ordinary Poisson model having several covariates such as a month and time
variable measured in the unit of month given by

log(µi) = β0 + β1xi1 + β2xi2 + β3(xi2)2, i = 1, 2, . . . , 534,

where xi1 denotes the categorical covariate month (1∼12) and xi2 is the log transformed time variable.
The month is included to explain the seasonal variation, and the time variable is the elapsed time
measured in units of month. The MLEs for each fitted model are listed in Table 4. The coefficient β̂1
varies according to the month, for example, in a Poisson-normal GLMM fit, the estimates are 0.00,
0.13, 0.52, 0.59, 0.59, 0.48, −0.10, −0.80, −1.20, −1.14, −0.79, −0.40. These estimates are similar
under the Poisson, quasi-Poisson, NB models. The signs of β̂1 are negative from month 7 to month
12, particularly small in the season of month 8 to month 11. Finally the ZIP model closely coincides
with the ordinary Poisson GLM with ω̂ ≈ 0 because the observed counts are positively large as shown
in Figure 2.

The GOF criteria are summarized in Table 4 with the parameter estimates and their standard
errors in parentheses. The Poisson-normal GLMM fits best among the four models and then the
quasi-Poisson and the NB models are the next in the sense of AIC and X2 criteria. We checked the
validity of normal random effects through a Q-Q plot of predicted random effects, which are not as
violated as in Example 1. This fact seems to improve the fit of the Poisson-normal GLMM compared
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Figure 2: Number of mumps against monthly times between 1928 and 1972

Table 4: Estimates for the mumps data fitted by four types of models
Parameter Poisson Quasi-Poisson NB GLMM

β̂0
2.74 2.74 3.83 3.35

(0.045) (0.447) (0.247) (0.255)

β̂1
1.51 1.51 0.97 1.12

(0.019) (0.186) (0.109) (0.113)

β̂2
−0.16 −0.16 −0.10 −0.11

(0.002) (0.019) (0.012) (0.013)
Dispersion - ϕ̂ = 99.9 κ̂ = 0.19 σ̂ = 0.46

X2 (df) 51940 (520) 520 (519) 541.1 (519) 475.9 (519)
D(yyy; µ̂µµ) (df) 49605 (520) 49605 (519) 550.8 (519) 2848 (519)

AIC 53755 - 6993.4 2878

to the alternative NB model; however, the NB model is best in the sense of D(yyy; µ̂µµ) statistic.
Several overdispersion models have been discussed with their GOF criteria for counts data through

two examples of different response types. Most responses in Example 1 are smaller than three with a
very large proportion of zeros; however, Example 2 denotes time series outcomes with strong autocor-
relations that denote significant seasonal variations and the violation of independence. We emphasize
that an appropriate overdispersion model should be chosen with proper assessment criteria for the
model GOF.

5. Discussion and Further Research

The various models for count responses with overdispersion has been discussed in the context of
mixture models. The quasi-likelihood method using only the relationship between mean and variance
incorporates a dispersion parameter to account for extra variation. The GLMM is more elaborate than
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the quasi-likelihood method; subsequently, we have two competing candidate models, the NB model
versus the Poisson-normal GLMM. The NB model has been used as standard for the overdispersion
model of count data. We show that the NB model belongs to a class of GLMM but has nonnormal
random effects. The goodness-of-fit of GLMM may depend on the random effects distribution that is
usually assumed to be normal. Commonly used software to fit GLMM is restricted to normal random
effects; therefore, we need to check the normality. The NB model in the framework of GLMM cannot
be directly fitted via commonly used software without special programming codes.

Goodness-of-fit for each overdispersed model can be assessed by usual criteria such as the chi-
squared statistic, deviance, and AIC measure. These statistics should be deliberately applied according
to the structure of data because the approximate distribution depends on the magnitude of estimated
means. Further the preference between the NB model and the Poisson-normal GLMM also may be
determined according to the validity of assumption for random effects.

Two examples have been introduced to explain several overdispersion models with their goodness-
of-fit criteria. We finally recommend that the Poisson-normal GLMM and the NB model are the
most competing models for count responses with overdispersion. The choice depends on assessment
criteria and assumptions for random effects. This paper has a limitation in that the selection method
of an appropriate model has not been justified through an empirical study. A Monte Carlo study that
compares models in terms of mean squared errors of estimates and GOF criteria will be a justifiable
method. These remain future research topics and include GOF statistics that use cumulative sums of
residuals.
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