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Nonlinear Displacement Discontinuity Model for Generalized
Rayleigh Wave in Contact Interface

Nohyu Kim* " and Seungyong Yang**

Abstract Imperfectly jointed interface serves as mechanical waveguide for elastic waves and gives rise to two
distinct kinds of guided wave propagating along the interface. Contact acoustic nonlinearity (CAN) is known to
plays major role in the generation of these interface waves called generalized Rayleigh waves in non-welded
interface. Closed crack is modeled as non-welded interface that has nonlinear discontinuity condition in
displacement across its boundary. Mathematical analysis of boundary conditions and wave equation is conducted
to investigate the dispersive characteristics of the interface waves. Existence of the generalized Rayleigh
wave(interface wave) in nonlinear contact interface is verified in theory where the dispersion equation for the
interface wave is formulated and analyzed. It reveals that the interface waves have two distinct modes and that
the phase velocity of anti-symmetric wave mode is highly dependent on contact conditions represented by linear
and nonlinear dimensionless specific stiffness.
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1. Introduction et al, 1995). From their works, the variation of
within  the
deformation of asperities is known to cause

elasticity of the interface. This

contact area interface due to

Contacttype discontinuity such as closed

cracks leads to an anomalously high level of nonlinear

nonlinearity. Well-known acoustical manifestation
of the nonlinear behavior is the generation of its
harmonics. In particular, the transmission and
reflection characteristics at contacting surfaces
have been the subject of extensive research
relating to the evaluation of contact interfaces
in NDT. However,
practical implementation of the second harmonic

and integrity monitoring
method requires lots of efforts to minimize

nonlinear distortions in transmitting/receiving

devices. The physical nature of the contact
acoustic nonlinearity(CAN) has been explained
by developing several mathematical models of

contacttype interface(Biwa et al., 2005; S. Roy

interface is considered as a linear spring whose
stiffness
within the interface. The linear model of the

is proportional to the contact area

springtype crack interface connects displacements
with stresses on both sides of the interface by
Theoretically, the
transmission/reflection spectra of the normally

employing spring stiffness.

incident longitudinal and shear waves are
governed by the normal and tangential stiffnesses
of the
interfacial stiffnesses are known to offer useful
nature of the

interface. In addition to the transmission/reflection

contact interface respectively. These

information on the contact

characteristics, the interfacial stiffnesses can be
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evaluated by elastic waves propagating along the

contact interface, as has been explored by
several researchers (Biwa, 2006 and Pyrak-Nolte,
1987 and 1992). They have carried out theoretical
analysis of the steady-state wave propagation
along a spring-type interface between two elastic
half-spaces and shown the existence of two
distinct modes of propagation; namely, the
symmetric mode and the anti-symmetric mode
that are governed separately by the normal and
the tangential interfacial stiffnesses. These waves
are a special kind of guided waves in the
interface and not Stonely waves but because the
material property of the half spaces of each side
of interface are These modes
propagating along the interface can be quite useful
to detect
closed so tightly that they do not produce linear

scattering waves during reflection/transmission of

same. wave

surface breaking cracks which are

linear ultrasound.

In this paper, a hysteretic nonlinear displacement
discontinuity model for the non-welded contact
interface is sought and analyzed to investigate
the possibility for interface waves to propagate
along the nonlinear contact boundaries and to
estimate contact state of the interface. Dispersion
equation of the waves is derived by combining
the wave equation with the boundary conditions:
In the
model, the traction applied to the interface is

nonlinear discontinuous displacements.

defined to be hysteretic to the discontinuity in

displacement using the nonlinear  specific
stiffness of the contact interface. The existence
of the waves is verified in theory by plane

wave analysis along the contact interface.

2. Nonlinear Displacement Discontinuity
Model for Contact Interface
Closed cracks in solid medium represent
mechanical discontinuity that strongly affects the
propagation of elastic waves either across or
along the crack boundary. At the micro-scale,
the contact interface appears as two surfaces of

irregular  topology which intersect to form
micro-void spaces and asperities of contact. The
presence of the asperitics and voids within
planar crack define a thin, compliant zone with
effective normal and shear stiffnesses that can
range from near zero for open crack to almost
infinite values for completely closed crack which
are bonded or subjected to high compressive
stresses. Typically a crack loaded in shear or
highly

relationship

compression  exhibits a nonlinear

stress-displacement resulting from
deformation of the asperities, the number and
distribution of which

shown in Fig. 1(a). Hysterisis also appears often

changes with load as
in the stress-displacement curve in Fig. 1(a)
during the loading and unloading (Kim, et al,
2004 and 2006),
inelastic deformation of the asperities of contact

indicating the presence of

and frictional sliding between contacts. Those

% loading
b A junloading
Au (displacement)
(@)
Au,
Loading(+)
% Unloading(-)
Au,
Au (displacement)
{b)
Fig. 1 Hysteretic nonlinear behavior of contact

interface, (a) loading-unioading curves, (b)
idealized hysteresis
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features of closed cracks play an important role
in the amplitudes, phases, and velocities of
elastic waves. Specific stiffness is the quantity
that relates the displacement to the traction of
closed contact interface, which may be linear or
nonlinear. In linear displacement discontinuity
model or imperfect interface model (Pyrak-Nolte
and Cook, 1992), two contact surfaces of each
boundary are assumed to be continuous in stress
but not in displacement at which the specific
stiffness is defined as a linear spring such that
the stress is proportional to the displacement
difference.

Let’s

oscillatory deformation cycle §;—.S5, between

consider a nonlinear hysteretic-

two deformation states, A%, and Au, in Fig.
1(b) caused by acoustic wave. The irreversible
deformation starts from Awu; to Awu, following
the loading curve .S, and returns to the original
point u; via the unloading curve S, completing
the one cycle of motion. A linear deformation
path S from Awu, to Au, is also presented in
Fig. 1(b) to introduce the linear stiffness K

from the
loading process S, of the hysteresis cycle, the

proportional linearity. During the
work done to the medium by stress is larger than
the linear case, while the work done by the
medium during the unloading process S, is
smaller than the linear unloading. The amount of
the energy difference is dissipated by the
nonlinearity and hysteresis of contact interface. In
this processes, the contact interface works as a
nonlinear spring that gets stiffer during the
loading and softer for unloading. Thus the
nonlinear spring can be formulated by adding
some stiffness to the linear spring during the
loading and subtracting the same stiffness from
the linear spring during unloading. Controlling
the spring stiffness during the cycle produces an
irreversible forces in the spring such as Coulomb

friction force and/or viscous force. Then the
stiffness is defined as the nonlinear stiffness XK.

The nonlinear stiffness X, is complex in general

and can be determined by the energy dissipation
produced by the corresponding nonlinear process
Sy or S;. Based on the above assumptions, the
stress-displacement  relationship  across  the
interface is expressed by the superposition of

linear spring kK and nonlinear hysteretic spring

K, such as

O-loading = Kloading (Au)a
=K (Au, —Au) )+, (Au, —Au, )
for S, (Joading)

(Au)’ (M

O.unloading = Kunloading

=k (Au, —Au, ) -k, (Au, —Au,)

for S, (unloading)
where a and b are power indices for
nonlinearity related with the loading and

unloading. Now suppose that two elastic bodies
with identical material properties which are put
Due to the
surface roughness, the contact at the interface

into contact by static pressure.

forms a microscopically imperfect elastic-plastic
(denoted by
superscript #) and lower (denoted by superscript

deformation between the upper

/) rough surfaces as shown in Fig. 2. The
upper
u'=(u,u;) and the lower surface u'=(u,u),

The sizes of asperities are assumed to be much

displacement of  the surface  is

smaller than the wavelength of acoustic wave so
that the incoherent scattering from the interface
is negligible. Since both displacement and stress

have discontinuity across the interface, some

WL

Fig. 2 Two surfaces in contact by pressure
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boundary conditions are necessary to connect
those These conditions are
obtained from the constitutive properties of the

discontinuities.

interface formulated by the hysteretic nonlinear

spring K, in eqn. (1) between the tractions and
the displacement across and along the interface
in normal and shear directions ( z and x in Fig.
2). The stress-displacement relations given by
eqn. (1) are adopted and applied to the interface
of Fig. 2 resulting in the following equations

1, =x.(Au)+x, (Au,)
=K () —u)+ K, (u —ul)
ti =x,(Au)—x, (Au)

= (0 — 1)~ K, () —uy)
;= x (A )+, (Au,)

= —u)+ K, () ~u))
L =&, (M)~ K, (Au,)

=, (! —u) K, (! —ul)

@

An Y

-~

/ y
where, ., ' . are the normal and shear

tractions on the wupper and lower surface,

K, ,K, are the linear normal and shear stiffness,

and K, .K,, nonlinear normal and shear

stiffness, and %, ,u_i u, ,ui are the displacements
of the upper and lower surface in x and z as
shown in Fig. 2. The positive and negative sign
of the nonlinear stiffnesses in eqn. (2) represent
the loading and unloading state of the tractions
according to the relative displacement of the
lower and upper surfaces in Fig. 2. The sign is
assigned positive if the displacement and traction
increase with the coordinate x and z, and
negative if the displacement and traction decrease
with the coordinate x and z. It is clear from this
sign rule that the displacements and tractions of
the lower surface are larger than those of the
upper surface in the coordinate system of Fig. 2.
Thus the traction on the lower surface of Fig. 2
acts as the unloading process of the hysteresis
defined in Fig. 1 with respect to those of the
upper surface. It could be possible to use the

sign rule conversely. It has been demonstrated by
1995) that the
dynamic stiffness in eqn. (2) is independent of

other researches (Nihei, et al,
wave frequency in case of relatively large
wavelength compared with the asperities of
contact, and well defined as static stiffness that
can be obtained from the stress-displacement
curve such as Fig. 1. It can be found from eqn.
(2) that if the nonlinear stiffnesses K, »K,. are
all zero, eqn. (2) leads to ¢’ =, , =t which
means stress continuity across the interface. It
becomes the same boundary condition as the
displacement discontinuity model (Pyrak-Nolte et
al., 1987).

for a traction-free boundary condition as X, and

It also represents the limiting cases

K, go to zero and for a welded interface as K.
and K, become infinity. Equation (2) gives a
simple but pertinent model for the nonlinear
properties of a non-welded contact between two
identical media.

3. Existence of Guided Waves in Contact
Interface

The existence of guided waves propagating
along the contact interface in the form of
interface waves or generalized Rayleigh waves
is found and derived by linear modeling of
the contact as a non-welded interface in the
studies on fractures (Biwa et al., 2005; Delsanto
et al., 2002; Pyrak-Nolte et al., 1987). Non-
welded

models by a set of boundary conditions: stress

interface is described in the linear

across the interface is continuous but the
displacements across or along the interface are
discontinuous having linear relation with the
stress. This displacement discontinuity boundary
condition is formulated by adopting the linear
specific stiffnesses connecting the displacement
discontinuity to the traction of contact interface.

In this work, the plane wave analysis is
made similarly based on this basic concept but
with nonlinear displacement discontinuity model

introduced in eqn. (2) of previous section to
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investigate the existence and characteristics of
nonlinear guided waves(interface wave) in the
contact interface. Generalized Rayleigh wave in
interface is a special form of guided wave that
propagates along the boundary between two
identical media unlike the Stoneley waves in
two different media. Trapped Rayleigh waves
are localized in the interface within a zone that
may extend only a few wavelengths away from
the boundary, allowing these waves to travel
large distance while suffering little reduction in
amplitude. The
inhomogeneous plane wave propagating along

displacement vector for an
the contact interface in x direction with the
amplitude that decays exponentially with distance
z away from the interface can be expressed for
the upper medium using the superscript u as
(Nihei et al., 1995)

u A poz —qoz 7, i(Kx—
ux(x,z)=a)[l_ie po +que q ]e (kx—ax)
c
B , ©)
u'(x,2) = a[-pAe " +i—Le 1 )
c
and for the lower medium wusing the
superscript /
1 .Az +pwz +qwzq _i(kx—eat)
0,2) = i gBe e
c
“4)

.B e
ul(x,2) = o] pA,e " +i—2 e 1 )"
c

where, ® is the angular frequency, ¢ is time,
A,, A,, B, and B, are unknown constants, c
is the phase velocity of the inhomogeneous
wave, and p and g are wave numbers given by

N T T .
L e R e ©

where, c¢

, and c, are the compressional and

shear wave velocity respectively. Tractions in the
upper and lower medium obtained by substituting
eqns. (3) and (4) into Hooke’s law are written by

1(x,2)=

Ol-2ipu 7 — yNB e
C

tzu (X, Z) =
aﬂ[(Lp2 _iz)Alefpmz _2l-'uq§1_e—qmz ]ei(roc—wt)
i ’ ©
ti (x’ Z) =
_ 0)2 [2ip'uﬁe+pwz _ ﬂNBZe+qwz ]ei(rcx—wr)
C
L(x,z)=
- 0)2 [(Lp2 _iz)Azeﬂamz + Zi,uq&e“’“” ]ei(Kx—mt)
¢ c
where, A and # are Lame’s constants,

L=(A+2y) and N=(c?+4¢"). Substituting
eqns. (3), (4 and (6) into
displacement discontinuity condition given by eqn.

the - nonlinear

(2) yields a system of four homogeneous linear
equations for four undetermined constants, A,
A,, B, and B,. From the necessary condition
for the existence of a non-trivial solution of the
linear equations, the determinant of the coefficient
matrix vanishes, which is given by

Lk +200p) Qg ruoN) -~k +2u0p) (295, + peN)
c C

@pr-00)  Loxizuep)  @c-aQ) Lk +2u0)

=0
L2k, +2u0p) (2K, +poN) (2, ~2p0p) (24K, — poN)
C C

Qe -00) Lk, +2ue)  @pr.+eQ) (2, -2uog)
@)

where, O =(Ac?—Lp’). Examining the first

two equations of eqn. (7) reveals that only

two combinations of solutions are possible
corresponding to:
i) 4,=-4,,B, =B, ()
ii) A4, =4 ,B,=-B, ®)

Replacing 4,, B, with A,, B, in eqn. (7)
using eqgns. (8) and (9) produces two wave
motions, one is symmetric about interface, and
the other is anti-symmetric about the interface.
For the conditions A, =—A,, B, =B, provoking

the anti-symmetric motion, the determinant in
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eqn. (7) reduces to

4 ,
cf[4+Ng]+£-2qc: +

C w

'y 2ilu g (10)
= ci[2pg—N]=0
HO C

Substituting the definitions of N, Q, p, and g¢
into eqn. (10) and rewriting it with dimensionless

quantities gives the dispersion equation for

anti-symmetric contact

motion in nonlinear

interface in more concise expression.

[4a* Vo —1-\Jo’ - —(1—20{2)2]4—2(’(—‘2‘)\/(12 -1
YA

"g ya[l-2a% +2a? ~1-Ja? — f21=0

+ 2i(
1)

(11)

C
5 s .
where, a=—, B=—, Z =pc, is the shear
P

. . Ky K,

acoustic impedance of the medium and —, —=
wZ,’ wZ,

are the linear and nonlinear specific shear

stiffnesses. In the same manner, the dispersion
equation for symmetric wave motion of nonlinear
contact interface i3 obtained by substituting eqn.
(9) into eqn. (7). For the symmetric motion,
Ay, =A,, B,=—B,, eqn. (7) is written by

@pr. —0Q)-Z k. + poN)+
C

L ax. +2p09)2px,, + 2 peop) =0
C C

) (12)
Ha[ON + C—zﬂPQ] +K, 2pu-
2,
]

o 2i
K, -—ﬁ[2pq +
[

Thus, the dispersion equation for symmetric
motion can be represented in terms of the ratios
of acoustic velocities, o and (3, as follows

[da* Vo -1-Ja* - B —(1-2a°)]+
a’f} Wea - +2i(;)%)a[1—zaz + (13)
e ~1-ja’ - 1=0

2(

s

KZ an

wZ,’ wZ

s s

where, are lincar and nonlinear

specific normal stiffnesses. Eqns. (11) and (13)
are the complete dispersion equations describing
propagating
nonlinear contact interface. It is clear that the

the interface waves along the
first terms of eqns. (11) and (13) represent the
free Rayleigh equation for the free boundary
condition. Second and third terms of eqns. (11)
and (13) result from the lincar and nonlinear
contact of interface surfaces, respectively. Eqn.
(11) and (13) include the angular frequency w,
which means that the waves are dispersive, so
that the wave velocities vary with the frequency
as well as material properties such as contact
stiffnesses. The

waves represented by eqns. (11) and (13) are

symmetric and anti-symmetric
generalized Rayleigh waves, which can be
schematized in Fig. 1. They degenerate to the
Rayleigh waves on the free surface when the
dimensionless lincar and nonlinear interface
stiffnesses are set to zero. If they are finite, eqgns.
(10) and (11) unlike the Rayleigh equation
become dispersive. Both waves have prograde
particle motion and the symmetric wave mode is
faster than the anti-symmetric wave. Eqns. (11)
and (13) also show that the symmetric wave mode
comes from the normal coupling between the
surfaces of the interface and the anti-symmetric
wave from the tangential shear coupling.

In order for the interface waves to exist and
propagate, eqns. (11) and (13) should have real

roots. However, the symmetric wave motion of

(b)

Fig. 3 Generalized Rayleigh waves, (a) symmetric
mode, (b) anti-symmetric mode
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eqn. (13) don’t have real roots at all regardless
of the linear and nonlinear stiffnesses except that
the nonlinear stiffness is zero. Therefore the
symmetric wave does not exist all the time.
From eqn. (I11) it is obvious too that the
ant-symmetric wave have real roots only if the
nonlinear stiffness is pure imaginary complex, i.e.
Kne = t7(n is real number). Otherwise the wave

motions exist only as leaky waves with energy
loss through the acoustic radiation. For instance,
if the interface boundary behaves like viscous
damper, the equations have real roots and the
waves propagate along the interface without big
energy loss.

However, if nonlinear effect is very small

and negligible, the dispersion equation for
symmetric waves is simplified by setting
Kng = 0’
[4a’Na? —1-Ja* - B2 —(1-2a*)* ]+
K, (14)

2Az—)a’ -4 =0

(wZS) B
Similarly, the dispersion equation of anti-
obtained by
substituting eqn. (8) into eqn. (7) when x,, =0,

[4a’Va® —=1-\Ja* = B =(1-2a%) ]+
2 KoyJa—1=0 (15)

ol

5

symmetric wave motion s

Eqns. (14) and (15) are exactly same as the
dispersion equation for the linear displacement
discontinuity model developed by Pyrak-Nolte
and Cook, 1992. If the interface is free of stress,

ie, K,=K, =K, =K,=0_ eqns. (17) and
(18) lead to the famous Rayleigh characteristic
equation for free surface.

4’ o' - fPNa’ —1-(1-2a%) =0 (16)
The symmetric wave given by eqn. (15) has
© ) (2 Jo=2v2(1~1v),

wZ, wZ,

s

K
complex roots when (

and decays into medium exponentially as leaky
wave even though the nonlinear stiffness is zero.

Contrarily the anti-symmetric wave of eqn. (15)
always has real roots and exists for all possible
stiffness values and frequencies. Because of this
feature of the
(A-wave), the study is focused on the A-waves

useful anti-symmetric  wave

excluding the symmetric wave hereafter.

4. Dispersion of Anti-Symmetric Waves in
Contact Interface

Fig. 4 depicts the dispersion curves of the
interface wave (anti-symmetric mode) for three
values of linear stiffness as a function of the
nonlinear stiffness. Clearly observed in Fig. 4 is
the monotonous increase of the phase velocity
ratio, « = c,/c(decrease of the phase velocity),

with the increase of the nonlinear stiffness X, .
Even when the nonlinear stiffness is less than
ix,/wZ =01 the phase velocity decreases
significantly with the increase of the nonlinear
stiffness. In the limiting case that the nonlinear
1K,
wZ,

s

stiffness

approaches 0.5 in Fig. 4, the

phase velocity of interface wave asymptotes to
the Rayleigh wave velocity regardless of the
linear stiffness and material properties. No
propagating waves exist beyond the value of
K, /®Z =05 as shown in Fig. 4, where the

phase velocity of the anti-symmetric interface

1.12

1104

«JoZ =0.01
1.08 o

p=0.624
1.06 4

1.04
s JoZ =1

1.024

Retative phase velocity(c /c)

o =G0
1.00 4

T T T T T
0.0 0.1 02 0.3 0.4 05 08

Nonlinear specific stiffness(u /oZ)

Fig. 4 Phase velocity variation of A-wave with
respective to the nonlinear specific

nx

stiffness

s
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wave is bounded by the nonlinear stiffness K.
as well as the linear stiffness.

It is also found from Fig. 4 that the linear
stiffness K. plays in the
dispersion characteristics in entire region. Phase
velocity is increased up to 10% by the increase

a key role too

of the linear stiffness X,.. On the contrary to the
nonlinear stiffness, the higher linear stiffness
makes the A-wave faster. However, if the linear
stiffness X, is very high in Fig. 4, the phase
velocity is almost constant and insensitive to the
nonlinear stiffness X,... The dispersion curve is
redrawn in Fig. 5 with respect to frequency to
investigate the effect of the wave frequency on
the phase velocity of the A-wave. The A-wave
velocity  is

reduced by the use

of higher
frequency and approaches the Rayleigh wave
velocity when the frequency goes to GHz level
in Fig. 5. On the contrary it increases and
asymptotes to the shear wave velocity as the
frequency decreases down to KHz order. It can
be deduced that this dependency of phase velocity
on the linear and nonlinear stiffnesses can be
used to analyze and estimate the contact state of
non-welded interface such as closed cracks.

It 1s likely to be more practical to assume a
light nonlinearity for dry contacts of engineering
metals. In that case, the dispersion equations (11)
and (13) reduce to eqgns. (14) and (15), which
are still dispersive and described in Fig. 6 as a
function of frequency. Fig. 6 shows that the
A-waves approach an asymptote defined by the
shear wave velocity for sufficiently low
frequency or high linear stiffness, and approach
the Rayleigh wave velocity for high frequency or
low linear stiffness. Fig. 6 also reveals that the
linear stiffness can be determined by measuring
the wave velocity of A-wave. If the contact
interface is so tight and completely closed that
the interface has the very large values of
stiffness, the wave velocity of A-wave gets close
to the If the
interface is loose, the stiffness becomes small

and the wave velocity is close to the Rayleigh

shear wave velocity. contact

wave velocity. Thus the dispersion curve gives a

142

«, =10 Paim, Z,=24.5x10° (Kg/m’sec)

1.104 g =g
= :!” e

2 L @3@?
% 1.08 4 10 ﬁ'gg\
Z 1w =10" Palm &
3 ! ®
T i
T 106 .
2
N
& 8
£ 1.04+ , o
S Sk, =100 Palim
i Y
2
T 1.02-
E W
. S &
100 =" ® o
T T T
0.01 01 1 10

Frequency(MHz)

Fig. 5 Dispersion for A-wave as a function of
frequency

1.00 S —

098+ )
&, =10" Pam

Y

0.98

0.97 4
—10"

0.96 4 x,=10" Pa/m

0.85 4

I
kﬂ:m‘u Pa/m
0.94 4

Relative phase velocity(c/c)

0.93 4

T T T T < T
10° 10" 10° 10* 10" 10" 100 100 10° 10t 10" 107
Frequency(MHz}

Fig. 6 Dispersion of A-wave when K, =0

1.01 4
1.00 4
0.99 4 Bulk shear wave

c/c,=0.535

~—
c/c,=0.624

Relative Phase Velocity(c/c,)
&
i

Free surface Rayleigh wave

T
001 o J 10 100
Linear specific stiffness(kx/mzs)

Fig. 7 Dispersion of A-wave as a function of
specific linear stiffness when K, = 0

tool for estimation of the contact state of
non-welded mterface such as cracks or welded
joints. It is plotted again in Fig. 7 in terms of
linear specific shear stiffness for different values
of B=c,/ c, representing different materials, for
instance, (3=0.535 for steel and [3=0.624 for
aluminum. In the figure, the dispersion becomes

relatively weak for low § and strong for high §.
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5. Conclusions

Interface waves of contact interface as
generalized Rayleigh waves propagating along
contact interface are demonstrated in theory based
on nonlinear displacement discontinuity model.
Hysteretic nonlinear model for contact interface is
developed to relate discontinuous displacements
with tractions on both sides of the contact

interface employing the hysteretic nonlinear
contact stiffness. Analytic solutions are derived to
obtain the dispersion curves for the symmetric
and anti-symmetric interface waves. Dispersion
equations indicate that symmetric mode exists
only as leaky wave and anti-symmetric mode can
propagate along the interface as guided wave if
the nonlinear stiffness is pure imaginary complex
like viscosity. Theoretical results show that the
phase velocity of the anti-symmetric wave is
sensitive to contact state and changed seriously as
much as 10% depending on both linear and
nonlinear stiffness. It is also observed that the
phase wvelocity of the anti-symmetric wave is
bounded ranging between the shear wave velocity
and the

nonlinear stiffness is neglected, It is expected that

Rayleigh wave velocity when the

this interface waves can be applied to detect and
estimate closed cracks by measuring contact

stiffness or the interface waves.
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