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Abstract
In this study we adapt discrete weibull regression model for clustered count data. Discrete weibull regression

model has an attractive feature that it can handle both under and over dispersion data. We analyzed the eighth
Korean National Health and Nutrition Examination Survey (KNHANES VIII) from 2019 to assess the factors
influencing the 1 month outpatient stay in 17 different regions. We compared the results using clustered discrete
Weibull regression model with those of Poisson, negative binomial, generalized Poisson and Conway-maxwell
Poisson regression models, which are widely used in count data analyses. The results show that the clustered
discrete Weibull regression model using random intercept model gives the best fit. Simulation study is also held
to investigate the performance of the clustered discrete weibull model under various dispersion setting and zero
inflated probabilities. In this paper it is shown that using a random effect with discrete Weibull regression can
flexibly model count data with various dispersion without the risk of making wrong assumptions about the data
dispersion.
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1. Introduction

Clustered count data arise in various areas such as public health, biomedical and behavioral sciences.
For example, patients can be clustered within hospitals, multi-center or other communities. Subjects
within a same cluster tend to be correlated and the within-cluster dependency must be taken into ac-
count. Ignoring the correlation of subjects can lead to incorrect conclusions (Dunlop,1994). Many
statistical methods are developed to deal with clustered count data and incorporating random effects
into a regression model is widely used. Lawless (1987) described random effects in negative binomial
and mixed Poisson regression models and Albert (1992) adopted a Bayesian approach for Poisson ran-
dom effect model. Also zero-inflated models with random effect models has gained much attention
when data include excessive zeros. Hall (2000) proposed a zero-inflated Poisson and binomial regres-
sion model with random effects and Yau et al. (2003) developed a zero-inflated negative binomial
mixed model. However, all these studies are based on regression models that have strong assumptions
of their data. Equal dispersion must be satisfied for Poisson model and negative Binomial model is
suitable for over-dispersed data. For under dispersed data generalized Poisson model can be used. Re-
cently Conway-Maxwell-Poisson (COMP) distribution which is an extension of Poisson regression is
widely used for count data. It has a merit that it can be used both for under and over dispersed data
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however the major difficulty with COMP regression is that the likelihood function contains multiple
intractable normalizing constants and is not amenable to standard inference and Markov Chain Monte
Carlo (MCMC) techniques (Alan and Nial, 2021).

In this paper we use discrete Weibull (DW) distribution to clustered count data. DW distribution
was first introduced by Nakagawa and Osaki (1975). It has an attractive feature that in can handle both
over and under dispersed data. Several papers have shown the flexibility of this model (Klakattawi
et al. 2018; Kulassekera, 1994). Through DW regression model, one can model count data without
the risk of having wrong assumptions about the data dispersion. Also data with many zeros can be
modeled through the DW since it has a parameter that can handle zero probabilities. Up to now there
are only few papers that deal with clustered count data using DW regression model. Recently Luyts
et al (2018) used DW model for longitudinal/clustered data structures and Barbiero (2019) proposed a
bivariate count model with discrete Weibull margins where they estimate parameters based on Farlie-
Gumbel- Morgenstern copula.

In this paper we extend the discrete DW regression model to clustered count data and compare the
performance with other commonly used models for count data. Random intercept is incorporated to
account for correlation between subjects within the same cluster. We also conduct a simulation study
to investigate the robustness of clustered DW under various dispersion type.

The remainder of the paper is organized as follows. In Section 2, we describe clustered DW
regression mode and in Section 3 we apply our statistical method to KNHANES VIII data. The
results of the simulation study are summarized in Section 4 and we conclude with a brief discussion
in Section 5.

2. Clustered discrete weibull regression model

In this section we introduce the clustered discrete Weibull regression model. Let Yi j denote the jth

subject measured for cluster i, i = 1, . . . , n, j = 1, . . . , ni, with the total number of subjects in the
data as N =

∑n
i=1 ni. We assume that Yi j arises from a clustered DW distribution with parameters q

and β. Parameter q is the probability that the outcome random variable Y has value greater than 0
and parameter β controls the range of the values of Y . As β converges to 0, the distribution is highly
skewed and as β converges to ∞, the DW distribution approaches to Bernoulli distribution. In the
presence of covariates we can denote random variable Yi j following the clustered DW as follows:

Yi j ∼ DW
(
q
(
XXXi j

)
, β

)
where XXX′i j = (1,XXX1,i j, . . . ,XXXp,i j) is a vector of covariates. Covariates can also be linked with parameter
β, however in this paper we linked the covariates only through q(XXXi j). The cumulative distribution
function with covariates can be denoted as:

FDW

(
Yi j; q

(
XXXi j

)
, β

)
=

 1 − q
(
XXXi j

)(Yi j+1)β
, Yi j = 0, 1, 2, 3,

0, Yi j < 0
(2.1)

and the probability mass function is given by:

fDW

(
Yi j; q

(
XXXi j

)
, β

)
= q

(
XXXi j

)Yβ
i j
− q

(
XXXi j

)(Yi j+1)β
(2.2)

for Yi j = 0, 1, 2, 3, . . . , 0 < q(XXXi j) < 1, β > 0.
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For clustered data, subjects in the same cluster tend to have correlation and this association can be
incorporated through random effects.Herein we consider a random-intercept model for the clustered
DW regression model and it can be denoted as follows:

log
(
− log

(
q
(
Xi j

)))
= θθθ′XXXi j + U0,i = θ0 + θ1X1,i j + θ2X2,i j + · · · + θpXp,i j + U0,i, (2.3)

where θθθ′ = (θ0, θ1, θ2, . . . , θp) the corresponding
(
p + 1

)
regression coefficients associated with XXX′i j=

(1,XXX1,i j, . . . ,XXXp,i j). U0,i is a random-effect following independently and identically distributed normal
distribution with mean 0 and a common dispersion parameter σ2

0, U0,i ∼ N(0, σ2
0).

To estimate the parameters we used h-likelihood which was first introduced by Lee and Nelder
(1996). The h-likelihood is an extension of penalized quasi-likelihood and is based on the joint distri-
bution of the random variable Y and the random effect.

Given a random sample (xi j, yi j), i = 1, . . . , n, j = 1, . . . , ni, the joint log-likelihood for the clus-
tered DW model is given as:

l (θθθ, β;yyy, xxx, u0) = l (θθθ, β;yyy, xxx|uuu0) + l
(
σ2

0; u0

)
(2.4)

=

n∑
i=1

ni∑
j=1

{
log

(
q(xi j)yβi j − q(xi j)yβi j

)}
+

n∑
i=1

−1
2

log (2π) −
1
2

log
(
σ2

0

)
−

1
2σ2

0

u2
0,i


and the score function for N observations is given by:

S N (θθθ, β;yyy, xxx,uuu0) =



∂l (θθθ, β;yyy, xxx,uuu0)
∂θk

, k = 0, . . . , p

∂l (θθθ, β;yyy, xxx,uuu0)
∂β

,

∂l (θθθ, β;yyy, xxx,uuu0)
∂u0,i

, i = 1, . . . , n

(2.5)

where

∂l (θθθ, β;yyy, xxx,uuu0)
∂θk

= −

n∑
i=1

ni∑
j=1

xk,i jex′i jθθθ+u0,i−e
x′i jθθθ+u0,i

wi j (θk, β)

yβi j

(
e−e

x′i jθθθ+u0,i

)yβi j−1
− (yi j + 1)β

(
e−e

x′i jθθθ+u0,i
)(yi j+1)β−1
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∂l (θθθ, β;yyy, xxx,uuu0)

∂β
= −
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i=1

ni∑
j=1

ex′i jθθθ+u0,i

wi j(θθθ, β)

(e−e
x′i jθθθ+u0,i

)yβi j

yβi j log
(
yi j
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(yi j+1)β log(yi j+1)
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1
2σ2

0

u2
0,i −

ni∑
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x′i jθθθ+u0,i
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x′i jθθθ+u0,i
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 ,
with wi j(θθθ, β)=(e−e

x′i jθθθ+u0,i )
yβi j
− (e−e

x′i jθθθ+u0,i
)(yi j+1)β . The parameters θθθ, β and u0,i can be obtained by solving

S N(θθθ, β;yyy, xxx,uuu0) = 0 and the parameter σ2
0 can be estimated using the procedure of second stage

(Lee and Nelder, 1996). The variance-covariance matrix V(θθθ, β, u0) of the maximum h-likelihood
estimators can be obtained from the expected inverse of the Fisher information matrix as below:

V (θθθ, β, u0) = E
(
−

∂2l
∂ (θθθ, β, u0)

)
. (2.6)
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(a) (b)

Figure 1: (a) Barplot of 1month Outpatient day and (b) Boxplot of 1month out patient days in each 17 regions.

Table 1: Covariate’s basic description for the KNHANES VIII data

Variables Categories Mean (sd)
n(%)

Age in years 65.19 (11.1)

Education

Elementary school 410 (40.5)
Middle school 162 (16.0)
High school 262 (25.9)

Graduate school 178 (17.6)

Home income

Low 344 (34.0)
Middle low 296 (29.2)
Upper low 191 (18.9)

High 181 (17.9)
Specialist, Service 220 (21.7)

Occupation Agriculture, Simple labor worker. 263 (26.0)
Unemployed 529 (52.3)

Subjective health status Good 667 (65.9)
Bad 345 (34.1)

Sex Male 371 (36.7)
Female 641 (63.3)

3. KNHANES VIII data analysis

To demonstrate the approach with real data, we used KNHANES VIII data from with patients who has
chronic disease. Chronic diseases have a large socioeconomic loss due to their long duration of illness.
In the case of medical users with more than 150 days of outpatient visits per year, more than half of
those are patients with complex chronic diseases (Lee, 2004). Especially The average outpatient visits
to doctors by Korean patients was 17 visits a year, which is the highest yearly rate among OECD
countries in 2018 (Michas, 2021). Accurately predicting the trend of outpatient visits can help policy
makers manage hospitals effectively, reasonably organize schedules for human resources.

In this section we analyzed the eighth KNHANES VIII data from 2019 to assess the factors influ-
encing the 1 month outpatient visit of patients with chronic disease in 17 different regions.

The data was collected from 17 different regions and the distribution of 1 month outpatient visit
for each region is shown as a boxplot in Figure 1 (a) and (b).

We can see from Figure 1 that the distribution of patients OV is highly skewed and also vary across
different regions. Patients in the same region compose a cluster and thus we incorporated a random
intercept in the DW regression model to predict the 1month outpatient visits of patients with chronic
disease. We considered covariates that affect the 1 month outpatient visit as age in years, education,
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Table 2: Parameter estimates (standard error) without random effect for (a) Discrete Weibull model, (b) Poisson
model (c) Negative binomial model (d) Generalized Poisson model (e) Conway-Maxwell Poisson model

Variable DW Poisson NB GP COMP

Age −0.00005 0.0009 0.0001 0.0013 0.0009
(0.0037) (0.0025) (0.0028) (0.0028) (0.0025)

Education

Elementary 0.2118 −0.2009* −0.1950* −0.1998 −0.1900*
school (0.1133) (0.0790) (0.0876) (0.0872) (0.0773)
Middle 0.1128 −0.082 −0.0808 −0.0782 −0.0780
school (0.1222) (0.0821) (0.0913) (0.0900) (0.0799)
High 0.1574 −0.1308 −0.1304 −0.1311 −0.1239

school (0.1043) (0.0720) (0.0797) (0.0788) (0.0703)

Home income

Low −0.4480* 0.2876* 0.2841* 0.2563 0.2720*
(0.1096) (0.0783) (0.0861) (0.0863) (0.0771)

Middle low −0.1646 0.1037 0.1039 0.0928 0.0983
(0.1033) (0.0744) (0.0816) (0.0811) (0.0725)

Upper low −0.0812 0.0595 0.0592 0.0580 0.0564
(0.1075) (0.0793) (0.0867) (0.0864) (0.0773)

Occupation

Specialist, 0.2362* −0.1504* −0.1506* −0.1352 −0.1423*
Service (0.0950) (0.0672) (0.0740) (0.0736) (0.0657)

Agriculture, 0.0360 −0.0152 −0.0170 −0.0157 −0.0144
Simple labor (0.0807) (0.0548) (0.0609) (0.0607) (0.0533)

Subjective Good −0.2931* 0.2155* 0.2147* 0.2095 0.2038*
Health Status (0.0691) (0.0459) (0.0511) (0.0509) (0.0455)

Sex Male 0.1242 −0.0782 −0.07785 −0.0715 −0.0739
(0.0699) (0.0493) (0.0544) (0.0544) (0.0480)

Other β = 1.7087* α = 0.1086* ν = 0.1055* η = 0.9208*
(0.0377) (0.0210) (0.0193) (0.0593)

AIC 3507.7 3543.5 3505.7 3508.8 3543.7
BIC 3571.6 3602.6 3569.6 3572.8 3607.7

*are values with p-value < 0.05.

home income, occupation, subjective health status and sex. The basic description of the covariates is
shown in Table1.

We compared the results of clustered DW with other commonly used models (Poisson, negative
binomial, generalized Poisson and Conway-maxwell Poisson model) for count data. In order to see
the effect of a random intercept in the model we also held a model without a random intercept. Table
2 shows the result of ignoring the clustering. According to the AIC and BIC, the negative binomial
regression model provides the best fit and DW has values similar to negative binomial. However
Poisson and COM-P model produced large values of AIC and BIC.

Table 3 shows the result of considering a random intercept in the model. The random effect in
all model was significant. Comparing the results of Table 2 and Table 3, for all models considering
a random effect had better fit with smaller AIC/BIC. Among the five models, the clustered DW had
the best fit compared to other models and Poisson regression model had the worst fit. Dispersion
parameter of negative binomial regression model showed significance implying the data is overdis-
persed compared Poisson regression model. The dispersion parameter in clustered DW also showed
significance. Variables that showed significance in predicting the 1 month outpatient visit are similar.
Poisson and negative binomial regression model had same variables (education, home income, occu-
pation and subject health status) that affect the 1 month outpatient visit, however in the clustered DW
model education did not effect the 1 month outpatient visit. Based on the clustered discrete Weibull
model, the results indicate that respondents of low household income, who were unemployed and
those with good subjective health status tend to frequently visit the hospital more than other groups.
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Table 3: Parameter estimates (standard error) with random effect for (a) Discrete Weibull model, (b) Poisson
model (c) Negative binomial model (d) Generalized Poisson model (e) Conway-Maxwell Poisson model

Variable DW Poisson NB GP COMP

Age −0.0013 0.0008 0.0009 0.0012 0.0008
(0.0038) (0.0025) (0.0028) (0.0028) (0.0025)

Education

Elementary 0.1930 −0.1964* −0.1914 −0.1984* −0.1892*
school (0.1157) (0.0802) (0.0883)* (0.0876) (0.0791)
Middle 0.0678 −0.0759 −0.0734 −0.0754 −0.0731
school (0.1255) (0.0831) (0.0920) (0.0904) (0.0816)
High 0.1293 −0.1264 −0.1261 −0.1299 −0.1218

school (0.1058) (0.0724) (0.0796) (0.0788) (0.0712)

Home income

Low −0.4453 0.2850* 0.2806* 0.2557* 0.2741*
(0.1119)* (0.0789) (0.0862) (0.0864) (0.0783)

Middle low −0.1734 0.1011 0.1008 0.0898 0.0972
(0.1046) (0.0748) (0.0817) (0.0812) (0.0735)

Upper low −0.0816 0.0557 0.0560 0.0555 0.0537
(0.1090) (0.0796) (0.0866) (0.0863) (0.0781)

Occupation

Specialist, 0.2315* −0.1538* −0.1530 −0.1391 −0.1479*
Service (0.0955) (0.0677) (0.0740) (0.0737) (0.0667)

Agriculture, 0.0561 −0.0227 −0.0225 −0.0181 −0.0214
Simple labor (0.0827) (0.0556) (0.0613) (0.0608) (0.0545)

Subjective Good −0.2903* 0.2107* 0.2111* 0.2084* 0.2028*
Health Status (0.0696) (0.0461) (0.0511) (0.0508) (0.0460)

Sex Male 0.1151 −0.0822 −0.0798 −0.0738 −0.0788
(0.0707) (0.0496) (0.0544) (0.0545) (0.0488)

Other β = 1.7403* α = 0.1039* ν = 0.1014* η = 0.9432*
(0.0395) (0.0209) (0.0197) (0.0608)

σ
0.1991* 0.1032* 0.0834* 0.0618 0.0964*
(0.0654) (0.0391) (0.0421) (0.0409) (0.0387)

AIC 3500.0 3539.4 3505.1 3509.5 3540.5
BIC 3511.6 3550.2 3516.7 3512.2 3552.1

*are values with p-value < 0.05.

Table 3 shows the result of considering a random intercept in the model. The random effect in
all model was significant. Comparing the results of Table 2 and Table 3, for all models considering
a random effect had better fit with smaller AIC/BIC. Among the five models, the clustered DW had
the best fit compared to other models and Poisson regression model had the worst fit. Dispersion
parameter of negative binomial regression model showed significance implying the data is overdis-
persed compared Poisson regression model. The dispersion parameter in clustered DW also showed
significance. Variables that showed significance in predicting the 1 month outpatient visit are similar.
Poisson and negative binomial regression model had same variables (education, home income, occu-
pation and subject health status) that affect the 1 month outpatient visit, however in the clustered DW
model education did not effect the 1 month outpatient visit. Based on the clustered discrete Weibull
model, the results indicate that respondents of low household income, who were unemployed and
those with good subjective health status tend to frequently visit the hospital more than other groups.

4. Simulation studies

Simulation study is conducted to investigate the performance of clustered DW regression model with
random effect in various distribution settings. To check if the clustered DW predicts well in various
dispersion type we simulated data based on four different distributions Poisson, negative binomial,
generalized Poisson and Conway-Mawxell Poisson.
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Table 4: Comparison of model fit based on AIC/BIC of four distributions and clustered DW

Fitted model Original model
Poisson NB GP COMP

DW AIC 298.9 412.6 344.7 319.3
BIC 297.3 411.0 343.1 317.8

Poisson AIC 297.8 512.6 439.0 324.0
BIC 296.6 511.5 437.9 322.8

NB AIC 330.9 414.6 363.6 325.6
BIC 329.8 413.5 362.4 324.4

GP AIC 298.9 417.2 342.2 320.1
BIC 297.3 415.7 340.6 318.5

COMP AIC 299.0 414.0 349.1 319.4
BIC 297.5 412.5 347.5 317.9

We considered a single covariate X ∼ Uniform(0, 1) with 5 clusters and 20 subjects within each
cluster. For all the four distributions we set the mean parameter µ = exp(0.2 + 0.4X) for Poisson
and extra parameters θ = 2 for negative binomial, λ = 0.50 for generalized Poisson and η = 0.7 for
Conway-Mawxell Poisson. To introduce clustering of subjects, we generated a latent random effect
from a normal distribution with mean0 and standard devianceσ = 0.5. We compared the AIC and BIC
of clustered DW and other four original models. Table 4 shows the AIC and BIC of each model. We
can see that the AIC and BIC value calculated from the clustered DW is similar (or even smaller) to
the original model and has smaller value compared to other fitted models. Thus it shows that clustered
DW performs well on various dispersion type of data.

5. Discussion

In this paper we adapt clustered DW regression model to account for count data which are correlated.
Random intercept is incorporated to accommodate the clustered structure. We estimate the regression
coefficient through h-likelihood. We compared the performance of clustered DW regression model
with other commonly used model for clustered count data. Through our case study using KNHANES
VIII data it is shown that incorporating random intercept with DW regression model has the best fit
compared to other models (Poisson, negative binomial, generalized Poisson and Conway-Maxwell
Poisson).

Also in order to examine the flexibility of clustered DW model we simulated data under various
setting. Based on the AIC/BIC the clustered DW model has small values indicating that clustered DW
regression model can fit various dispersion type of data. In this paper it is shown that clustered DW
regression model can be a suitable choice for when the data is clustered. It can handle both over and
under dispersion data without any other additional assumptions. This flexible modeling aspect is the
most attractive feature of DW regression.

In this paper we only considered the random intercept effect however random slope effect can
be also incorporated in the clustered DW regression model. Even though DW regression model can
handle data with many zeros. Modeling the process of zeros and non-zeros in the model inside the
clustered DW regression model can be a better choice. Thus clustered zero inflated DW regression
model will be our future study.
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