1 |
Agresti, A. (2002). Categorical Data Analysis, 2nd Ed., Wiley, New York.
|
2 |
Breslow, N. E. and Clayton, D. G. (1993). Approximate inference in generalized linear mixed models, Journal of the American Statistical Association, 88, 9-25.
|
3 |
Jowaheer, V. and Sutradhar, B. C. (2002). Analysing longitudinal count data with overdispersion, Biometrika, 89, 389-399
DOI
ScienceOn
|
4 |
McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models, Second Ed., Chapman and Halls, London.
|
5 |
Morel, J. G. and Neerchal, N. K. (2012). Overdispersion Models in SAS, SAS Institute Inc.
|
6 |
Pan, Z. and Lin, D. Y. (2005). Goodness-of-Fit methods for generalized linear mixed models, Biometrics, 61, 1000-1009.
DOI
ScienceOn
|
7 |
Sutradhar, S. C., Neerchal, N. K. and Morel, J. G. (2007). A goodness-of-fit test for overdispersed binomial or multinomial models, Journal of Statistical Planning and Inference, 138, 1459-1471.
|
8 |
Thall, P. F. and Vail, S. C. (1990). Some covariance models for longitudinal count data with overdispersion, Biometrics, 46, 657-671.
DOI
ScienceOn
|
9 |
Waagepetersen, R. (2006). A simulation-based goodness-of-fit test for random effects in generalized linear mixed models, Scandinavian Journal of Statistics, 33, 721-731.
DOI
ScienceOn
|
10 |
Wedderburn, R. W. M. (1974). Quasi-likelihood functions, generalized linear models, and the Gauss- Newton method, Biometrika, 61, 439-447.
|
11 |
Wood, G. R. (2002). Assessing goodness-of-fit for Poisson and negative binomial models with low means, Communications in Statistics, Theory and Methods, 31, 1977-2001.
DOI
ScienceOn
|
12 |
Xu, W. and Lu, Y. (2009). Goodness-of-fit for longitudinal count data with overdispersion, Communications in Statistics, Theory and Methods, 38, 3745-3754.
DOI
ScienceOn
|