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ABSTRACT - This study developed a Poisson generalized linear mixed model and a procedure to estimate genetic 
parameters for count traits. The method derived from a frequentist perspective was based on hierarchical likelihood, and the 
maximum adjusted profile hierarchical likelihood was employed to estimate dispersion parameters of genetic random effects. 
Current approach is a generalization of Henderson^s method to non-normal data, and was applied to simulated data. 
Underestimation was observed in the genetic variance component estimates for the data simulated with large heritability by 
using the Poisson generalized linear mixed model and the corresponding maximum adjusted profile hierarchical likelihood. 
However, the current method fitted the data generated with small heritability better than those generated with large 
heritability. (Asian-Aus, J. Anim. Set 2000. Vol. 13, No, 8 : 1035-1039)
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INTRODUCTION

Various quantitative genetic analyses of non-normal 
data have been extended from Hendersonian mixed 
model methodology. For instance, ordinary categorical 
traits such as dystocia were analyzed with threshold 
models (Gianola and Foulley, 1983; Harville and Mee, 
1984; Zhao, 1987). A probit link function was re­
commended for analysis of a Bernoulli variable such 
as survival data (Foulley et al., 1987; Everett, 1996). 
Poisson models have been suggested for count variates, 
e.g. litter size (Foulley et al., 1987), prolificacy 
(Perez-Enciso et al., 1993), and embryo yield 
(Tempelman and Gianola, 1994). These models can be 
categorized as generalized linear mixed model 
(GLMM) which is the mixture of mixed model and 
generalized linear model. In GLMM, marginal 
maximum likelihood (MML) estimation was 
traditionally applied to estimating dispersion parameters 
in animal genetic analyses (Foulley et al., 1987; 
Foulley and Im, 1993; Tempelman and Gianola, 1993), 
However, it is computationally troublesome in GLMM 
because it requires the numerical evaluation of high 
dimension 이 integrals. Generally, they cannot be 
evaluated in closed forms, so approximation must be 
used. For instance, Stiratelli et al. (1984) introduced 
an expectation-maximization (EM) algorithm, Breslow 
and Clayton (1993) used penalized quasi marginal 
likelihood, and Tempelman and Gianola (1993) 
employed Laplace method to marginalize posterior 
densities in the field of animal breeding.

One of the major interests in the models which 
include genetic random effects is to develop a better 
method that estimates genetic variance components. 
Along with mixed models, Patterson and Thompson's 
(1971) restricted maximum likelihood (REML) has 
been employed as a standard method to estimate 
variance components. Breslow and Clayton (1993) 
extended this approach to GLMM by using the normal 
likelihood.

As a choice for genetic analysis of count traits, the 
current study attempted to derive a likelihood-based 
method with Poisson GLMM from a frequentist 
perspective. The methodology was developed based on 
Lee and Nelder's (1996) hierarchical generalized linear 
models (HGLM) where the random effects can have 
any kind of arbitrary density function. In HGLM, if 
the random effects follow a normal distribution as in 
the current study, it is reduced to GLMM.

Lee and Nelder (1996) introduced the maximum 
adjusted profile hierarchical likelihood estimator 
(MAPHLE) in HGLM. The MAPHLE was derived to 
estimate genetic variance component in the Poisson 
GLMM. While previous studies (Foulley et al., 1987; 
Tempelman and Gianola, 1994) on animal genetic 
analyses with Poisson GLMM dealt with 
approximations, the method presented in the current 
study did not.

MATERIALS AND METHODS

Hierarchical Poisson generalized linear mixed model
Genetic analyses for count, data can be performed 

with a Poisson error model with random effects 
(Foulley et al., 1987; Tempelman and Gianola, 1993). 
The models with random effects can be represented as 
various two-stage hierarchical structures as shown by 
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Searle et al. (1992). According to them, mixed models 
were considered as normal-nornial hierarchical models.

A Poisson-normal hierarchy was composed as 
follows. First, the conditional distribution of a count 
variate given fixed and random effects has the Poisson 
distributicm:
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where 北次 is observation, B t is fixed effect, Uy is 
random effect, and A y is Poisson parameter. Secondly, 
the distribution of the vector v has the multivariate 
normal distribution with zero means and the 
covariances equal to A /금 where v=log u, A is 
numerator relationship matrix, and o’ 2a is additive 
genetic variance. The linear predictor (7)') takes the 
form 7)*=X +Zu where B and u are vectors of 
unknown fixed and random effects, respectively, and X 
and Z are their corresponding known design matrices. 
For this Poisson error model, the canonical log link 
was used between linear predictor and the mean of 
the response, i.e. 7),=ln where is the 
conditional mean of 서 given u. Thus, the distribution 
of u has a multivariate log normal distribution.

matrix be Hp=- d 호hK d o 호a)호. 

for genetic variance component 
iteratively solving the equation
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Convergence criterion utilized in this study was:

In order to confirm that the value at convergence 
was not a local maximum, at least three runs with 
different initial values were performed for each

Then the hierarchical log likelihood was 
constructed by summing the logarithm of the density 
functions in two stages. The equation is presented 
below:

h = l(A; y I 。％ z丿)
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where r is the size of the matrix, A.
With known genetic variance component, the 

estimators and predictors can be derived by 
maximizing the hierarchical likelihood, i.e., the 
estimates are obtained by solving d h/ d g =0 and d 川 
d v=0. The estimates are called maximum hierarchical 

likelihood estimates (MHLE). In field data, the genetic 
variance component estimation needs to be preceded 
obtaining the MHLE. The MHLE corresponds to the 
posterior mode of Tempelman and Gianola (1993) 
under the assumption of the uniform prior density for 
genetic variance component in Bayesian inference. But 
the assumption about the prior is theoretically 
improper (Hobert and Casella, 1996). In this study, 
solutions were obtained by Newton-Raphson method 
after constructing the expected Hessian matrix:

rr_j X，秋 XT^Z \
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where W is the GLM weight function, W=( 8 以'/

9 ?7')2v(以')"，and U=- d 21( <7 2a;v)/ 5 v 5 v5. Let (^,(k)
的)be the k出 solution vector. Then the solutions 

can be obtained by iteratively solving this equation:

(对)=(的+3广價
.dv .

In every round, (k+1)山 solutions satisfy the above 
equation. Iterations continue until solutions converge. 
Now the resulting solutions to B and v based on 
known variances become the best linear unbiased 
predictor and the marginal maximum likelihood 
estimator (Lee and Nelder, 1996).

Estimation of genetic variance component
MAPHLE was derived to estimate genetic variance 

component in the hierarchical Poisson generalized 
linear mixed model. Adjusted hierarchical likelihood is 
defined as follows:

hA=h +.51n(det(2nH-1)|.

Then the adjusted profile hierarchical likelihood is

hp—h—A I =/?,v=v 5

where 0 and v are estimated values. The first 
and the second derivatives against genetic variance 
component were derived as:
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Let the Hessian 
Then the MAPHLE 
can be obtained by 
below:
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analysis.
The MAPHLE becomes the REML estimator in 

mixed linear models, so it is the generalization of the 
REML estimator to non-normal mixed models. 
MAPHLE was justified by the method of moments 
(Lee and Nelder, 1996).

Simulation
Monte Carlo simulation was performed to examine 

whether the method introduced in this study was 
suitable for genetic evaluation of the count traits. 
Simulated were embryo yields within a nu 이 eus 
breeding scheme combined with multiple ovulation and 
embryo transfer. An embryo yield was generated with 
a Poisson parameter whose logarithm could be 
additively explained by fixed and random effects. The 
fixed effects had five levels. The underlying means on 
the log scale were ln(3), ln(4), ln(5), ln(6), and ln(7) 
for the five levels.

Genetic merits for the base animals (25 sires and 
50 dams) were generated from normal distribution with 
zero mean and variance equal to 0.05, 0.1, or 0.2. 
The data simulated with these three values were 
referred to Data 1, Data 2, and Data 3, respectively. 
The genetic merits for the subsequent generations were 
calculated as half of the genetic merits of their parents 
plus the Mendelian sampling. The Mendelian sampling 
is a random sampling of parental genes caused by 
segregation and independent assortment of genes 
during germ cell formation. The sampling was 
generated from N(0, cr %/2). Sex of progeny was 
randomly assigned. Among female progeny, fifty donor 
cows were also randomly selected per generation. They 
were superovulated and mated to randomly assigned 
sires. Random matings and random selections were 
applied all through the simulation. Finally the 
phenotypes were generated from Poisson distribution 
with the Poisson parameter equal to the exponent of 
the fixed effects multiplied by the exponent of the 
random effects. Two hundred fifty donor dams were 
produced and ten records were simulated per donor 
dam. Therefore, 2,500 embryo yields were generated 
per population. A total of 20 replicates were 
simulated. All the random deviates from Poisson and 

Normal distributions were generated based on the 
algorithms by Press et al. (1992).

RESULTS

The estimates of genetic variance and fixed effects 
using the likelihood-based method derived in this study 
were obtained from the simulated data (tables 1 and 
2). Based on the empirical standard errors from 20 
replicates, t tests were performed to examine whether 
the estimates were different from the input values. 
Overall, the MAPHLEs of genetic variance components 
obtained from the three data sets tended to be 
underestimated (table 1). This concurred with 
Tempelman and Gianola (1993, 1994). However, the 
estimates of genetic variances obtained from Data 1 
and from Data 2 corresponded to their input values 
(p그0.05), but not from Data 3 (p<0.05).

The fixed effect estimates of the underlying means 
on the log scale from Data 1 are shown in table 2. 
Fixed effect estimates for the first to the fifth levels 
did not differ from their corresponding input values 
(p그0.05). However, some estimates obtained from Data 
2 were different from their corresponding input values 
(p<0.05). Furthermore, most estimates from Data 3 
were not corresponding to their input values (p<0.05). 
These differences showed the evidence of bias 
produced in this estimation method. Such bias had 
been consistently identified in previous GLMM studies 
(Breslow and Clayton, 1993; Tempelman and Gianola, 
1994).

Table 1. Maximum adjusted profile hierarchical 
likelihood estimates and their empirical standard 
errors of genetic variance components obtained in 
simulated data

Data Input value Estimate ±S.E.

1 0.05 0.047ns± 0.002
2 0.1 0.094ns± 0.003
3 0.2 0.186* ±0.005

ns p>0.05; * p<0.05.

Table 2. Estimates and their empirical standard errors of fixed effects obtained in simulated data

Input value 一
Estimate ±S.E.

Data 1 ( a 2a=.05) Data 2 (cr2a=.l) Data 3 (cr2a=.2)
1.10 i,nns±o.oio 1.12ns±0.012 1.14*±0.013
1.39 1.39ns± 0.009 1.41”±0.011 1.42ns± 0.016
1.61 1.62ns± 0.008 1.64*±0.012 1.65*±0.014
1.79 1.81ns ±0.007 1.82* ±0.009 1.84*±0.016
1.95 1.96ns± 0.008 1.97ns±0.012 1.98ns±0.018

ns p그0.05; * p<0.05.
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DISCUSSION

While animal breeders (e.g.? Gianola and Foulley, 
1983; Foulley and Gianola, 1984) had suggested 
Bayesian approach for estimating parameters of 
non-normal data, a likelihood-based method derived 
from a frequentist perspective was applied in this 
study. It should be noted that no assumptions on the 
distribution of genetic variance component was made 
here as opposed to subjective priors in the Bayesian 
analyses. The inferences using hierarchical likelihood 
can avoid the high dimensional integration of fixed 
and random effects, which is required for the use of 
marginal likelihood.

The method employed in this study is an 
expansion of Henderson's mixed model approach. If 
observations are assumed to have normal errors, the 
current model is equivalent to mixed model. 
Hierarchical likelihood is an expansion of Henderson's 
(1975) joint likelihood to non-normal mixed models, 
and MAPHLE is an expansion of Patterson and 
Thompson's (1971) REML.

It is theoretically more reasonable to analyze count 
traits with Poisson error model (or Poisson GLMM) 
than with Normal error model (or mixed model). As 
mentioned in the introduction, GLMM is a mixture of 
mixed model and generalized linear model. Therefore, 
GLMM has many advantages over mixed models. 
First, GLMM can accommodate non-normal or 
non-linear data because observations can have errors 
from certain exponential families. For instance, the 
current study dealt with count data employing Poisson 
distribution. Second, GLMM allows a link between the 
mean. response and the predictor. A log link was 
utilized in the current study while the identity link is 
assumed in classical mixed models. Third, GLMM can 
explain overdispersion. Since Poisson error was 
assumed in this study, variance of response equaled its 
mean. However, dispersion parameters can be included 
even in the Poisson error model, i.e., var(y | u)= 
^V(“‘) where 甲 is dispersion parameter. This 

modified model would be applied to field data to 
explain heterogeneity of dispersion parameters.

Single variance component for random effects was 
employed in this study. However, the analyses of field 
data often require more than one component. The 
vector of the random effects can be partitioned as u* 
디" 或 ... us' ] where Ui is vector of the ith random 
effects. Then the generalization of the procedure for 
the model with multiple variance components is 
straightforward. Furthermore, distribution of random 
effects can be generalized. Lee and Lee (1998) 
introduced Gamma distribution for random effects to 
sire evaluation.

The applicability of the MAPHLE in genetic 
parameter estimation was investigated in this study. 

The use of Poisson GLMM and the corresponding 
MAPHLE produced some biases as other methods did 
(Breslow and Clayton, 1993; Tempelman and Gianola, 
1994). The proposed method fitted the data generated 
with small heritability (Data 1) better than those with 
large heritability (Data 3).
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