• Title/Summary/Keyword: Generalized Hyers-Ulam-Rassias stability

Search Result 63, Processing Time 0.023 seconds

STABILITY OF DERIVATIONS ON PROPER LIE CQ*-ALGEBRAS

  • Najati, Abbas;Eskandani, G. Zamani
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.1
    • /
    • pp.5-16
    • /
    • 2009
  • In this paper, we obtain the general solution and the generalized Hyers-Ulam-Rassias stability for a following functional equation $$\sum\limits_{i=1}^mf(x_i+\frac{1}{m}\sum\limits_{{i=1\atop j{\neq}i}\.}^mx_j)+f(\frac{1}{m}\sum\limits_{i=1}^mx_i)=2f(\sum\limits_{i=1}^mx_i)$$ for a fixed positive integer m with $m\;{\geq}\;2$. This is applied to investigate derivations and their stability on proper Lie $CQ^*$-algebras. The concept of Hyers-Ulam-Rassias stability originated from the Th. M. Rassias stability theorem that appeared in his paper: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72(1978), 297-300.

STABILITY OF A GENERALIZED QUADRATIC FUNCTIONAL EQUATION WITH JENSEN TYPE

  • LEE, YOUNG-WHAN
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.1
    • /
    • pp.57-73
    • /
    • 2005
  • In this paper we solve a generalized quadratic Jensen type functional equation $m^2 f (\frac{x+y+z}{m}) + f(x) + f(y) + f(z) =n^2 [f(\frac{x+y}{n}) +f(\frac{y+z}{n}) +f(\frac{z+x}{n})]$ and prove the stability of this equation in the spirit of Hyers, Ulam, Rassias, and Gavruta.

A General System of Nonlinear Functional Equations in Non-Archimedean Spaces

  • Ghaemi, Mohammad Bagher;Majani, Hamid;Gordji, Madjid Eshaghi
    • Kyungpook Mathematical Journal
    • /
    • v.53 no.3
    • /
    • pp.419-433
    • /
    • 2013
  • In this paper, we prove the generalized Hyers-Ulam-Rassias stability for a system of functional equations, called general system of nonlinear functional equations, in non-Archimedean normed spaces and Menger probabilistic non-Archimedean normed spaces.

ON THE GENERALIZED HYERS-ULAM STABILITY OF A CUBIC FUNCTIONAL EQUATION

  • Jun, Kil-Woung;Lee, Sang-Baek
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.19 no.2
    • /
    • pp.189-196
    • /
    • 2006
  • The generalized Hyers-Ulam stability problems of the cubic functional equation f(x + y + z) + f(x + y - z) + 2f(x - y) + 4f(y) = f(x - y + z) + f(x - y - z) +2f(x + y) + 2f(y + z) + 2f(y - z) shall be treated under the approximately odd condition and the behavior of the cubic mappings and the additive mappings shall be investigated. The generalized Hyers-Ulam stability problem for functional equations had been posed by Th.M. Rassias and J. Tabor [7] in 1992.

  • PDF

ON THE STABILITY OF AN n-DIMENSIONAL QUADRATIC EQUATION

  • Jun, Kil-Woung;Lee, Sang-Baek
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.1
    • /
    • pp.23-29
    • /
    • 2007
  • Let X and Y be vector spaces. In this paper we prove that a mapping $f:X{\rightarrow}Y$ satisfies the following functional equation $${\large}\sum_{1{\leq}k<l{\leq}n}\;(f(x_k+x_l)+f(x_k-x_l))-2(n-1){\large}\sum_{i=1}^{n}f(x_i)=0$$ if and only if the mapping f is quadratic. In addition we investigate the generalized Hyers-Ulam-Rassias stability problem for the functional equation.

  • PDF

APPROXIMATE EULER-LAGRANGE-JENSEN TYPE ADDITIVE MAPPING IN MULTI-BANACH SPACES: A FIXED POINT APPROACH

  • Moradlou, Fridoun
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.2
    • /
    • pp.319-333
    • /
    • 2013
  • Using the fixed point method, we prove the generalized Hyers-Ulam-Rassias stability of the following functional equation in multi-Banach spaces: $${\sum_{1{\leq}i_&lt;j{\leq}n}}\;f(\frac{r_ix_i+r_jx_j}{k})=\frac{n-1}{k}{\sum_{i=1}^n}r_if(x_i)$$.

GENERALIZED CUBIC FUNCTIONS ON A QUASI-FUZZY NORMED SPACE

  • Kang, Dongseung;Kim, Hoewoon B.
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.29-46
    • /
    • 2019
  • We introduce a generalized cubic functional equation and investigate the Hyers-Ulam stability of the cubic functions as solutions to the generalized cubic functional equation on a quasi-fuzzy anti-${\beta}$-Banach space by both the direct method and the fixed point method.