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Abstract. In this paper, we prove the generalized Hyers–Ulam–Rassias stability for a

system of functional equations, called general system of nonlinear functional equations,

in non-Archimedean normed spaces and Menger probabilistic non-Archimedean normed

spaces.

1. Introduction and Preliminaries

The first stability problem concerning group homomorphisms was raised by
Ulam[31] in 1940 and solved in the next year by Hyers[15]. Hyers’ theorem was
generalized by Aoki[2] for additive mappings and by Rassias[28] for linear map-
pings by considering an unbounded Cauchy difference. In 1994, a generalization
of the Rassias theorem was obtained by Gǎvruta[11] by replacing the unbounded
Cauchy difference by a general control function. In recent years many authors have
investigated the stability of various functional equations in various spaces (see for
instance [4, 6, 7, 8, 12, 16, 17, 21, 26, 27]).

In this paper we establish some stability result concerning a general system
of nonlinear functional equations in non-Archimedean normed spaces and Menger
probabilistic non-Archimedean normed spaces.

It has been turned out that non-Archimedean spaces have many useful applica-
tions in quantum physics, p–adic strings and superstrings (see [5, 18, 19, 24]). The
proofs for non–Archimedean spaces are essentially different and entirely require new
kind of intuition (see for instance [3, 9, 10, 23, 25, 32]).
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Definition 1.1. Let K be a field. A valuation mapping on K is a function
| · | : K → R such that for any a, b ∈ K we have

(i) |a| ≥ 0 and equality holds if and only if a = 0,

(ii) |ab| = |a||b|,

(iii) |a + b| ≤ |a|+ |b|.

A field endowed with a valuation mapping will be called a valued field. If the
condition (iii) in the definition of a valuation mapping is replaced with

(iii)′ |a + b| ≤ max{|a|, |b|}

then the valuation | · | is said to be non–Archimedean. The condition(iii)′ is called
the strict triangle inequality. By (ii), we have |1| = | − 1| = 1. Thus, by induction,
it follows from (iii)′ that |n| ≤ 1 for each integer n. We always assume in addition
that | · | is non trivial, i.e., that there is an a0 ∈ K such that |a0| 6∈ {0, 1}.The most
important examples of non-Archimedean spaces are p–adic numbers.

Example 1.2. Let p be a prime number. For any non–zero rational number
a = pr m

n such that m and n are coprime to the prime number p, define the p–adic
absolute value |a|p = p−r. Then | · | is a non–Archimedean norm on Q. The com-
pletion of Q with respect to | · | is denoted by Qp and is called the p–adic number
field.

Definition 1.3. Let X be a linear space over a scalar field K with a non–
Archimedean non–trivial valuation | · |. A function ‖ · ‖ : X → R is a non–
Archimedean norm (valuation) if it satisfies the following conditions:

(NA1) ‖x‖ = 0 if and only if x = 0;

(NA2) ‖rx‖ = |r|‖x‖ for all r ∈ K and x ∈ X;

(NA3) the strong triangle inequality (ultrametric); namely,
‖x + y‖ ≤ max{‖x‖, ‖y‖} (x, y ∈ X).

Then (X, ‖ · ‖) is called a non–Archimedean space.

It follows from (NA3) that

‖xm − xl‖ ≤ max{‖x+1 − x‖ : l ≤  ≤ m− 1} (m > l),

therefore a sequence {xm} is Cauchy in X if and only if {xm+1 − xm} converges to
zero in a non–Archimedean space.

Probabilistic normed spaces were first defined by Šerstnev in 1962 (see [30]).
Their definition was generalized by Alsina, Schewizer and Sklar [1]. We recall and
apply the definition of Menger probabilistic normed spaces briefly as given in [29].
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Definition 1.4. A distance distribution function (briefly, a d.d.f.) is a non-
decreasing function F from [0, +∞] into [0, 1] that satisfies F (0) = 0 and F (+∞) =
1, and is left-continuous on (0, +∞). The space of d.d.f.’s will be denoted by ∆+;
and the set of all F in ∆+ for which limt→+∞− F (t) = 1 by D+. The space ∆+

is partially ordered by the usual pointwise ordering of functions, i.e., F ≤ G if and
only if F (x) ≤ G(x) for all x in [0, +∞]. For any a ≥ 0 , εa is the d.d.f. given by

εa(t) =

{
0, if t ≤ a,

1, if t > a.

Definition 1.5. A triangular norm (briefly t–norm) is a binary operation T :
[0, 1] × [0, 1] → [0, 1] which is commutative, associative, non–decreasing in each
variable and has 1 as the unit element. Basic examples are the  Lukasiewicz t–norm
TL, TL(a, b) = max(a + b − 1, 0), the product t–norm TP , TP (a, b) = ab and the
strongest triangular norm TM , TM (a, b) = min(a, b).

Definition 1.6. A Menger Probabilistic Normed space is a triple (X, ν, T ), where
X is a real vector space, T is continuous t–norm and ν is a mapping (the probabilis-
tic norm) from X into ∆+, such that for every choice of p and q in X and a, s, t in
(0, +∞), the following hold:

(PN1) ν(p) = ε0, if and only if, p = θ (θ is the null vector in X);

(PN2)ν(ap)(t) = ν(p)( t
|a| );

(PN3) ν(p + q)(s + t) ≥ T
(
ν(p)(s), ν(q)(t)

)
.

Now we introduce definition of a Menger probabilistic non–Archimedean normed
space by the definition of a non–Archimedean fuzzy normed space which is given in
[20] and [22].

Definition 1.7. Let X be a vector space over a non–Archimedean field K and
T be a continuous t–norm. A triple (X, ν, T ) is said to be a Menger probabilistic
non–Archimedean normed space if (PN1) and (PN2) (in Definition??) and

(PNA3) ν(x + y)(max{s, t}) ≥ T
(
ν(x)(s), ν(y)(t)

)
,

for all x, y ∈ X and all s, t > 0, are satisfied.

It follows from ν(x) ∈ ∆+ that ν(x) is non–decreasing for every x ∈ X. So one
can show that the condition (PNA3) is equivalent to the following condition:

ν(x + y)(t) ≥ T
(
ν(x)(t), ν(y)(t)

)
.
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Definition 1.8. Let (X, ν, T ) be a Menger probabilistic non–Archimedean normed
space. Let {xn} be a sequence in X. Then {xn} is said to be convergent if there
exists x ∈ X such that limn→∞ ν(xn − x)(t) = 1, for all t > 0. In that case, x is
called the limit of the sequence {xn}. A sequence {xn} in X is called Cauchy if for
each ε > 0 and each t > 0 there exists n0 such that for all n ≥ n0 and all p > 0 we
have ν(xn+p − xn)(t) > 1− ε.

Let T be a given t–norm. Then (by associativity) a family of mappings Tn :
[0, 1] → [0, 1], n ∈ N, is defined as follows:

T 1(x) = T (x, x) , Tn(x) = T (Tn−1(x), x) , x ∈ [0, 1].

For three important t–norms TM , TP and TL we have

Tn
M (x) = x , Tn

P (x) = xn , Tn
L (x) = max{(n + 1)x− n, 0} , n ∈ N.

Definition 1.9(Hadzić[13]). A t–norm T is said to be of H–type if a family of
functions {Tn(t)}; n ∈ N , is equicontinuous at t = 1, that is,

∀ε ∈ (0, 1) ∃δ ∈ (0, 1) : t > 1− δ ⇒ Tn(t) > 1− ε (n ≥ 1).

The t-norm TM is a trivial example of t–norm of H–type, but there are t-norms
of H–type with T 6= TM (see e.g., Hadzić[14]).

Lemma 1.10. We consider the notations of the Definition(1.8.). Also assume that
T is a t–norm of H–type. Then the sequence {xn} is Cauchy if for each ε > 0 and
each t > 0 there exists n0 such that for all n ≥ n0 we have ν(xn+1−xn)(t) > 1− ε.

Proof. Due to

ν(xn+p − xn)(t) ≥ T
(
ν(xn+p − xn+p−1)(t), ν(xn+p−1 − xn)(t)

)
≥

T
(
ν(xn+p − xn+p−1)(t), T (ν(xn+p−1 − xn+p−2)(t), ν(xn+p−2 − xn)(t))

)
≥

...

≥ T
(
ν(xn+p − xn+p−1)(t), T (ν(xn+p−1 − xn+p−2)(t), · · · ,

T (ν(xn+2 − xn+1)(t), ν(xn+1 − xn)(t))) · · ·
)
,

and by the assumption of T, which is an H–type t–norm, the sequence {xn} is
Cauchy if for each ε > 0 and each t > 0 there exists n0 such that for all n ≥ n0 we
have ν(xn+1 − xn)(t) > 1− ε. We will use this criterion in this paper. 2

It is easy to see that every convergent sequence in a (Menger probabilistic) non–
Archimedean normed space is Cauchy. If each Cauchy sequence is convergent, then
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the (Menger probabilistic) non–Archimedean normed space is said to be complete
and is called (Menger probabilistic) non–Archimedean Banach space.

We assume that f : Xn → Y and λi : K → K be mappings and introduce the
following system:



f(a1x1, x2, ..., xn) = λ1(a1)f(x1, ..., xn);
f(x1, a2x2, ..., xn) = λ2(a2)f(x1, ..., xn);

...
f(x1, ..., aixi, ..., xn) = λi(ai)f(x1, ..., xn);

...
f(x1, ..., xn−1, anxn) = λn(an)f(x1, ..., xn);

(1.1)

for all xi ∈ X and ai ∈ K \ {0}, i = 1, ..., n. We call the above system the general
system of nonlinear functional equations. One can show that the following mappings
satisfying system(1.1).

{
λi(a) = ai =⇒ f(x1, x2, ..., xn) = x1x

2
2 · · ·xn

n

λi(a) = bai

i for bi 6= 0,±1 =⇒ f(x1, x2, ..., xn) = bx1
1 b

x2
2

2 · · · bxn
n

n

In the section(2), we establish the generalized Hyers–Ulam–Rassias stability of
system(1.1) in non–Archimedean Banach spaces. In the section(3), we establish
the generalized Hyers–Ulam–Rassias stability of system(1.1) in Menger probabilis-
tic non–Archimedean Banach spaces.

2. System(1.1) Stability in non–Archimedean Banach Spaces

In this section, we prove the generalized Hyers–Ulam–Rassias stability of
system(1.1) in non–Archimedean Banach spaces. Throughout this section, we
assume that i, m, n, p ∈ N ∪ {0}, K is a non–Archimedean field, Y is a non–
Archimedean Banach space over K and X is a vector space over K. Also assume
that f : Xn → Y and λi : K → K are mappings.

Theorem 2.1. Let ϕi : Xn → [0,∞) for i ∈ {1, ..., n} be a function such that

lim
m→∞

max{ 1
|(λ1(a1))m+1...(λi(ai))m+1(λi+1(ai+1))m...(λn(an))m|

ϕi(am+1
1 x1, ..., a

m+1
i−1 xi−1, a

m
i xi, ..., a

m
n xn) : i = 1, ..., n} = 0,

(2.1)
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and

Φ = Φ(x1, ..., xn) = lim
p→∞

max
{

max{ 1
|(λ1(a1))m+1...(λi(ai))m+1(λi+1(ai+1))m...(λn(an))m|

ϕi(am+1
1 x1, ..., a

m+1
i−1 xi−1, a

m
i xi, ..., a

m
n xn)

: i = 1, ..., n} : m = 0, 1, ..., p
}

< ∞,

(2.2)

and

lim
m→∞

1
|(λ1(a1))m...(λn(an))m|

ϕi(am
1 x1, ..., a

m
n xn) = 0,(2.3)

for all xi ∈ X and ai ∈ K \ {0}, i = 1, ..., n. Let f : Xn → Y be a mapping
satisfying

‖f(a1x1, x2, ..., xn)− λ1(a1)f(x1, ..., xn)‖ ≤ ϕ1(x1, ..., xn);
...

‖f(x1, ..., aixi, ..., xn)− λi(ai)f(x1, ..., xn)‖ ≤ ϕi(x1, ..., xn);
...

‖f(x1, ..., xn−1, anxn)− λn(an)f(x1, ..., xn)‖ ≤ ϕn(x1, ..., xn);

for all xi ∈ X and ai ∈ K \ {0}, i = 1, ..., n. Then there exists a unique mapping
T : Xn → Y satisfying system(1.1) and

(2.4) ‖f(x1, ..., xn)− T (x1, ..., xn)‖ ≤ Φ,

for all xi ∈ X, i = 1, ..., n.

Proof. Fix i ∈ {1, 2, ..., n} and consider the following inequality.

‖f(x1, ..., aixi, ..., xn)− λi(ai)f(x1, ..., xn)‖ ≤ ϕi(x1, ..., xn).(2.5)

From (2.5) we get

‖f(x1, ..., xn)− 1
λi(ai)

f(x1, ..., aixi, ..., xn)‖ ≤ 1
|λi(ai)|

ϕi(x1, ..., xn).

Therefore one can obtain

‖ 1
λ1(a1)...λi−1(ai−1)

f(a1x1, ..., ai−1xi−1, xi, ..., xn)−

1
λ1(a1)...λi(ai)

f(a1x1, ..., aixi, xi+1, ..., xn)‖ ≤

1
|λ1(a1)...λi(ai)|

ϕi(a1x1, ..., ai−1xi−1, xi, ..., xn).

(2.6)
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So by induction and (2.6), we conclude

‖f(x1, ..., xn)− 1
λ1(a1)...λn(an)

f(a1x1, ..., anxn)‖ ≤

max{ 1
|λ1(a1)...λi(ai)|

ϕi(a1x1, ..., ai−1xi−1, xi, ..., xn) : i = 1, ..., n}.

Therefore we get

‖ 1
(λ1(a1))m...(λn(an))m

f(am
1 x1, ..., a

m
n xn)−

1
(λ1(a1))m+1...(λn(an))m+1

f(am+1
1 x1, ..., a

m+1
n xn)‖ ≤

max{ 1
|(λ1(a1))m+1...(λi(ai))m+1(λi+1(ai+1))m...(λn(an))m|

ϕi(am+1
1 x1, ..., a

m+1
i−1 xi−1, a

m
i xi, ..., a

m
n xn) : i = 1, ..., n},

(2.7)

for all m ∈ N ∪ {0}. It follows from (2.7) and (2.1) that the sequence

{ 1
(λ1(a1))m...(λn(an))m

f(am
1 x1, ..., a

m
n xn)}

is Cauchy. Since the space Y is complete, this sequence is convergent. Therefore
we can define
T : Xn → Y by

T (x1, ..., xn) := lim
m→∞

1
(λ1(a1))m...(λn(an))m

f(am
1 x1, ..., a

m
n xn),(2.8)

for all xi ∈ X and ai ∈ K \ {0}, i = 1, ..., n. Using induction with (2.7) one can
show that

‖f(x1, ..., xn)− 1
(λ1(a1))p...(λn(an))p

f(ap
1x1, ..., a

p
nxn)‖ ≤

max
{

max{ 1
|(λ1(a1))m+1...(λi(ai))m+1(λi+1(ai+1))m...(λn(an))m|

ϕi(am+1
1 x1, ..., a

m+1
i−1 xi−1, a

m
i xi, ..., a

m
n xn)

: i = 1, ..., n} : m = 0, 1, ..., p
}

.

(2.9)

for all xi ∈ X, i = 1, ..., n and p ∈ N ∪ {0}. By taking p to approach infinity in
(2.9) and using (2.2) one obtains (2.4).
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For fixed i ∈ {1, 2, ..., n} and by (2.5) and (2.8), we get

‖T (x1, ..., aixi, ..., xn)− λi(ai)T (x1, ..., xn)‖ =

lim
m→∞

‖ 1
(λ1(a1))m...(λn(an))m

f(am
1 x1, ..., a

m+1
i xi, ..., a

m
n xn)−

λi(ai)
(λ1(a1))m...(λn(an))m

f(am
1 x1, ..., a

m
n xn)‖

≤ lim
m→∞

1
|(λ1(a1))m...(λn(an))m|

ϕi(am
1 x1, ..., a

m
n xn).

(2.10)

By (2.10) and (2.3), we conclude that T satisfies system(1.1).
Suppose that there exists another mapping T ′ : Xn → Y which satisfies

system(1.1) and (2.4). So we have

‖T (x1, x2, ..., xn)− T ′(x1, x2, ..., xn)‖ ≤
1

|(λ1(a1))m...(λn(an))m|
max

{
‖T (am

1 x1, ..., a
m
n xn)− f(am

1 x1, ..., a
m
n xn)‖,

‖f(am
1 x1, ..., a

m
n xn)− T ′(am

1 x1, ..., a
m
n xn)‖

}
≤

1
|(λ1(a1))m...(λn(an))m|

max
{

Φ(am
1 x1, ..., a

m
n xn) , Φ(am

1 x1, ..., a
m
n xn)

}
,

which tends to zero as m → ∞ by (2.2). Therefore T = T ′. This completes the
proof. 2

We obtain the following corollary if we assume λi(a) = ai in Theorem(2.1).

Corollary 2.2. Let ϕi : Xn → [0,∞) for i ∈ {1, 2, ..., n} be a function such that

lim
m→∞

max{ 1

|am+1
1 a

2(m+1)
2 ...a

i(m+1)
i a

(i+1)m
i+1 ...anm

n |
ϕi(am+1

1 x1, ..., a
m+1
i−1 xi−1,

am
i xi, ..., a

m
n xn) : i = 1, ..., n} = 0,

and

Φ = Φ(x1, ..., xn) =

lim
p→∞

max
{

max{ 1

|am+1
1 a

2(m+1)
2 ...a

i(m+1)
i a

(i+1)m
i+1 ...anm

n |
ϕi(am+1

1 x1, ..., a
m+1
i−1 xi−1,

am
i xi, ..., a

m
n xn) : i = 1, ..., n} : m = 0, 1, ..., p

}
< ∞,

and

lim
m→∞

1
|am

1 a2m
2 ...anm

n |
ϕi(am

1 x1, ..., a
m
n xn) = 0,
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for all xi ∈ X and ai ∈ K \ {0}, i = 1, ..., n. Let f : Xn → Y be a mapping
satisfying

‖f(a1x1, x2, ..., xn)− a1f(x1, ..., xn)‖ ≤ ϕ1(x1, ..., xn);
‖f(x1, a2x2, ..., xn)− a2

2f(x1, ..., xn)‖ ≤ ϕ2(x1, ..., xn);
...

‖f(x1, ..., aixi, ..., xn)− ai
if(x1, ..., xn)‖ ≤ ϕi(x1, ..., xn);

...
‖f(x1, ..., xn−1, anxn)− an

nf(x1, ..., xn)‖ ≤ ϕn(x1, ..., xn);

for all xi ∈ X and ai ∈ K \ {0}, i = 1, ..., n. Then there exists a unique mapping
T : Xn → Y satisfying system(1.1) for λi(ai) = ai

i and

‖f(x1, ..., xn)− T (x1, ..., xn)‖ ≤ Φ,

for all xi ∈ X, i = 1, ..., n.

3. System (1.1) Stability in Menger Probabilistic non–Archimedean Ba-
nach Spaces

In this section, we prove the generalized Hyers–Ulam–Rassias stability of
system(1.1) in Menger probabilistic non–Archimedean Banach spaces. Through-
out this section, we assume that u ∈ R , i, m, n ∈ N∪{0}, K is a non–Archimedean
field, T is a continuous t–norm of H–type, (Y, ν, T ) is a Menger probabilistic
non–Archimedean Banach space over K, (Z, ω, T ) is a Menger probabilistic non–
Archimedean normed space over K and X is a vector space over K. Also assume
that f : Xn → Y and λi : K → K are mappings.

Theorem 3.1. Let ϕi : Xn → Z for i ∈ {1, ..., n} be a mapping such that



ϕ̃i = ϕ̃i(x1, ..., xn, u) =

ω
(

1
|λ1(a1)...λi(ai)|ϕi(a1x1, ..., ai−1xi−1, xi, ..., xn)

)
(u);

Φ1 = Φ1(x1, ..., xn, u) = ϕ̃1(x1, ..., xn, u);

Φi = Φi(x1, ..., xn, u) = T
(
ϕ̃i(x1, ..., xn, u), Φi−1(x1, ..., xn, u)

)
;

limm→∞ Φn(am
1 x1, ..., a

m
n xn, |(λ1(a1))m...(λn(an))m|u) = 1;

(3.1)

and

lim
m→∞

ω
( 1
|(λ1(a1))m...(λn(an))m|

ϕi(am
1 x1, ..., a

m
n xn)

)
(u) = 1;(3.2)
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and 

Φ∗
m = Φ∗

m(x1, ..., xn, u) =
Φn(am

1 x1, ..., a
m
n xn, |(λ1(a1))m...(λn(an))m|u);

Ψ0 = Φ∗
0(x1, ..., xn, u) = Φn(x1, ..., xn, u);

Ψm = Ψm(x1, ..., xn, u) =

T
(

Φ∗
m(x1, ..., xn, u), Ψm−1(x1, ..., xn, u)

)
;

Ψ = Ψ
(
x1, ..., xn, u

)
= limm→∞ Ψm = 1;

(3.3)

for all u > 0 , xi ∈ X and ai ∈ K\{0} , i = 1, ..., n. Let f : Xn → Y be a mapping
satisfying

ν
(
f(a1x1, x2, ..., xn)− λ1(a1)f(x1, ..., xn)

)
(u) ≥ ω

(
ϕ1(x1, ..., xn)

)
(u);

...

ν
(
f(x1, ..., aixi, ..., xn)− λi(ai)f(x1, ..., xn)

)
(u) ≥ ω

(
ϕi(x1, ..., xn)

)
(u);

...

ν
(
f(x1, ..., xn−1, anxn)− λn(an)f(x1, ..., xn)

)
(u) ≥ ω

(
ϕn(x1, ..., xn)

)
(u);

for all u > 0 , xi ∈ X and ai ∈ K \ {0}, i = 1, ..., n. Then there exists a unique
mapping F : Xn → Y satisfying system(1.1) and

(3.4) ν
(
f(x1, ..., xn)− F (x1, ..., xn)

)
(u) ≥ Ψ,

for all u > 0 and xi ∈ X, i = 1, ..., n.

Proof. Fix i ∈ {1, 2, ..., n} and consider the following inequality.

ν
(
f(x1, ..., aixi, ..., xn)− λi(ai)f(x1, ..., xn)

)
(u) ≥

ω
(
ϕi(x1, ..., xn)

)
(u).

(3.5)

From (3.5) we get

ν
(
f(x1, ..., xn)− 1

λi(ai)
f(x1, ..., aixi, ..., xn)

)
(u) ≥ ω

( 1
|λi(ai)|

ϕi(x1, ..., xn)
)

(u).

Therefore one can obtain

ν
( 1

λ1(a1)...λi−1(ai−1)
f(a1x1, ..., ai−1xi−1, xi, ..., xn)−

1
λ1(a1)...λi(ai)

f(a1x1, ..., aixi, xi+1, ..., xn)
)

(u) ≥

ω
( 1
|λ1(a1)...λi(ai)|

ϕi(a1x1, ..., ai−1xi−1, xi, ..., xn)
)

(u) = ϕ̃i.

(3.6)



A General System of Nonlinear Functional Equations 429

So by induction and by (3.1) and (3.6), we have

ν
(
f(x1, ..., xn)− 1

λ1(a1)...λn(an)
f(a1x1, ..., anxn)

)
(u) ≥ Φn.(3.7)

Therefore we get

ν
( 1

(λ1(a1))m...(λn(an))m
f(am

1 x1, ..., a
m
n xn)−

1
(λ1(a1))m+1...(λn(an))m+1

f(am+1
1 x1, ..., a

m+1
n xn)

)
(u) ≥

Φn(am
1 x1, ..., a

m
n xn, |(λ1(a1))m...(λn(an))m|u)

(3.8)

for all m ∈ N ∪ {0}. So by (3.1) and (3.8), the sequence

{ 1
(λ1(a1))m...(λn(an))m

f(am
1 x1, ..., a

m
n xn)}

is Cauchy. By completeness of Y , we conclude that it is convergent. Therefore we
can define F : Xn → Y by

lim
m→∞

ν
(
F (x1, ..., xn)−

1
(λ1(a1))m...(λn(an))m

f(am
1 x1, ..., a

m
n xn)

)
(u) = 1,

(3.9)

for all u > 0 , xi ∈ X and ai ∈ K \ {0}, i = 1, ..., n. Using induction with (3.8) one
can show that

ν
(
f(x1, ..., xn)−

1
(λ1(a1))m...(λn(an))m

f(am
1 x1, ..., a

m
n xn)

)
(u) ≥ Ψm.

(3.10)

By taking m to approach infinity in (3.10) and using (3.3) one obtains (3.4).
For i ∈ {1, 2, ..., n} and by (3.5) and (3.9), we get

ν
(
F (x1, ..., aixi, ..., xn)− λi(ai)F (x1, ..., xn)

)
(u) =

lim
m→∞

ν
( 1

(λ1(a1))m...(λn(an))m
f(am

1 x1, ..., a
m+1
i xi, ..., a

m
n xn)−

λi(ai)
(λ1(a1))m...(λn(an))m

f(am
1 x1, ..., a

m
n xn)

)
(u) ≥

lim
m→∞

ω
( 1
|(λ1(a1))m...(λn(an))m|

ϕi(am
1 x1, ..., a

m
n xn)

)
(u).

(3.11)

By (3.2) and (3.11), we conclude that F satisfies system(1.1).
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Suppose that there exists another mapping F ′ : Xn → X which satisfies
system(1.1) and (3.4). So we have

ν
(
F (x1, ..., xn)− F ′(x1, ..., xn)

)
(u)

= ν
( 1

(λ1(a1))m...(λn(an))m
F (am

1 x1, ..., a
m
n xn)

− 1
(λ1(a1))m...(λn(an))m

f(am
1 x1, ..., a

m
n xn)

+
1

(λ1(a1))m...(λn(an))m
f(am

1 x1, ..., a
m
n xn)

− 1
(λ1(a1))m...(λn(an))m

F ′(am
1 x1, ..., a

m
n xn)

)
(u)

≥ T
{

Ψm

(
am
1 x1, ..., a

m
n xn, |(λ1(a1))m...(λn(an))m|u

)
,

Ψm

(
am
1 x1, ..., a

m
n xn, |(λ1(a1))m...(λn(an))m|u

)}
,

which tends to 1 as m →∞ by (3.3). Therefore F = F ′.
This completes the proof. 2

We conclude the following corollary if we assume λi(a) = ai in Theorem(3.1).

Corollary 3.2. Let ϕi : Xn → Z for i ∈ {1, ..., n} be a mapping such that
ϕ̃i = ϕ̃i(x1, ..., xn, u) = ω

(
1

|a1a2
2...ai

i|
ϕi(a1x1, ..., ai−1xi−1, xi, ..., xn)

)
(u);

Φ1 = Φ1(x1, ..., xn, u) = ϕ̃1(x1, ..., xn, u);

Φi = Φi(x1, ..., xn, u) = T
(
ϕ̃i(x1, ..., xn, u), Φi−1(x1, ..., xn, u)

)
;

limm→∞ Φn(am
1 x1, ..., a

m
n xn, |am

1 a2m
2 ...anm

n |u) = 1;

and

lim
m→∞

ω
( 1
|am

1 a2m
2 ...anm

n |
ϕi(am

1 x1, ..., a
m
n xn)

)
(u) = 1;

and
Φ∗

m = Φ∗
m(x1, ..., xn, u) = Φn(am

1 x1, ..., a
m
n xn, |am

1 a2m
2 ...anm

n |u);
Ψ0 = Φ∗

0(x1, ..., xn, u) = Φn(x1, ..., xn, u);

Ψm = Ψm(x1, ..., xn, u) = T
(

Φ∗
m(x1, ..., xn, u), Ψm−1(x1, ..., xn, u)

)
;

Ψ = Ψ
(
x1, ..., xn, u

)
= limm→∞ Ψm = 1.

for all u > 0 , xi ∈ X and ai ∈ K \ {0}, i = 1, ..., n. Let f : Xn → Y be a mapping
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satisfying

ν
(
f(a1x1, x2, ..., xn)− a1f(x1, ..., xn)

)
(u) ≥ ω

(
ϕ1(x1, ..., xn)

)
(u);

ν
(
f(x1, a2x2, ..., xn)− a2

2f(x1, ..., xn)
)

(u) ≥ ω
(
ϕ2(x1, ..., xn)

)
(u);

...

ν
(
f(x1, ..., aixi, ..., xn)− ai

if(x1, ..., xn)
)

(u) ≥ ω
(
ϕi(x1, ..., xn)

)
(u);

...

ν
(
f(x1, ..., xn−1, anxn)− an

nf(x1, ..., xn)
)

(u) ≥ ω
(
ϕn(x1, ..., xn)

)
(u);

for all u > 0 , xi ∈ X and ai ∈ K \ {0}, i = 1, ..., n. Then there exists a unique
mapping F : Xn → Y satisfying system(1.1) for λi(ai) = ai

i and

ν
(
f(x1, ..., xn)− F (x1, ..., xn)

)
(u) ≥ Ψ

for all u > 0 and xi ∈ X, i = 1, ..., n.
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