GENERALIZED HYERS—ULAM——RASSIAS
 STABILITY OF A FUNCTIONAL EQUATION IN THREE VARIABLES

Chun-Gil Park* and Hee-Jung Wee**

Abstract. In this paper, we prove the generalized Hyers-UlamRassias stability of the functional equation

$$
\begin{aligned}
& a f\left(\frac{x+y+z}{b}\right)+a f\left(\frac{x-y+z}{b}\right)+a f\left(\frac{x+y-z}{b}\right) \\
& \quad+a f\left(\frac{-x+y+z}{b}\right)=c f(x)+c f(y)+c f(z) .
\end{aligned}
$$

1. Introduction

Let X and Y be Banach spaces with norms $\|\cdot\|$ and $\|\cdot\|$, respectively. Hyers [4] showed that if $\epsilon>0$ and $f: X \rightarrow Y$ such that

$$
\|f(x+y)-f(x)-f(y)\| \leq \epsilon
$$

for all $x, y \in X$, then there exists a unique additive mapping $T: X \rightarrow$ Y such that

$$
\|f(x)-T(x)\| \leq \epsilon
$$

for all $x \in X$.
Consider $f: X \rightarrow Y$ to be a mapping such that $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in X$. Assume that there exist constants $\epsilon \geq 0$ and $p \in[0,1)$ such that

$$
\|f(x+y)-f(x)-f(y)\| \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right)
$$

Received by the editors on January 24, 2005.
2000 Mathematics Subject Classifications: Primary 39B52.
Key words and phrases: functional equation in three variables, stability.
for all $x, y \in X$. Th.M. Rassias [7] showed that there exists a unique \mathbb{R}-linear mapping $T: X \rightarrow Y$ such that

$$
\|f(x)-T(x)\| \leq \frac{2 \epsilon}{2-2^{p}}\|x\|^{p}
$$

for all $x \in X$. Găvruta [3] generalized the Rassias' result.
A square norm on an inner product space satisfies the important parallelogram equality $\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2}$. The functional equation

$$
f(x+y)+f(x-y)=2 f(x)+2 f(y)
$$

is called a quadratic functional equation. In particular, every solution of the quadratic functional equation is said to be a quadratic function. A Hyers-Ulam stability problem for the quadratic functional equation was proved by Skof [8] for mappings $f: X \rightarrow Y$, where X is a normed space and Y is a Banach space. Cholewa [1] noticed that the theorem of Skof is still true if the relevant domain X is replaced by an Abelian group. In [2], Czerwik proved the Hyers-Ulam-Rassias stability of the quadratic functional equation.

In [5], the authors solved the quadratic type functional equation

$$
\begin{aligned}
a^{2} f\left(\frac{x+y+z}{a}\right) & +a^{2} f\left(\frac{x-y+z}{a}\right)+a^{2} f\left(\frac{x+y-z}{a}\right) \\
& +a^{2} f\left(\frac{-x+y+z}{a}\right)=4 f(x)+4 f(y)+4 f(z)
\end{aligned}
$$

and proved the Hyers-Ulam-Rassias stability of the quadratic type functional equation.

Throughout this paper, assume that a, b, c are positive real numbers, and that X and Y are a real normed vector space with norm $\|\cdot\|$ and a real Banach space with norm $\|\cdot\|$, respectively.

In [6], the authors solved the following functional equation

$$
\begin{align*}
a f\left(\frac{x+y+z}{b}\right) & +a f\left(\frac{x-y+z}{b}\right)+a f\left(\frac{x+y-z}{b}\right) \\
& +a f\left(\frac{-x+y+z}{b}\right)=c f(x)+c f(y)+c f(z) \tag{1.i}
\end{align*}
$$

for all $x, y, z \in X$, and prove the Hyers-Ulam-Rassias stability of the functional equation.

In this paper, we prove the generalized Hyers-Ulam-Rassias stability of the functional equation (1.i).

2. Stability of a functional equation in three variables

Given a mapping $f: X \rightarrow Y$, we set

$$
\begin{aligned}
D f(x, y, z):= & a f\left(\frac{x+y+z}{b}\right)+a f\left(\frac{x-y+z}{b}\right)+a f\left(\frac{x+y-z}{b}\right) \\
& +a f\left(\frac{-x+y+z}{b}\right)-c f(x)-c f(y)-c f(z)
\end{aligned}
$$

for all $x, y, z \in X$.
ThEOREM 1. Let $f: X \rightarrow Y$ be an odd mapping for which there is a function $\varphi: X^{3} \rightarrow[0, \infty)$ such that

$$
\begin{align*}
\widetilde{\varphi}(x, y, z) & :=\sum_{j=0}^{\infty} \frac{1}{2^{j}} \varphi\left(2^{j} x, 2^{j} y, 2^{j} z\right)<\infty \tag{2.i}\\
\|D f(x, y, z)\| & \leq \varphi(x, y, z) \tag{2.ii}
\end{align*}
$$

for all $x, y, z \in X$. Then there exists a unique additive mapping $A: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-A(x)\| \leq \frac{1}{2 c}(\widetilde{\varphi}(2 x, 0,0)+\widetilde{\varphi}(x, x, 0)) \tag{2.iii}
\end{equation*}
$$

for all $x \in X$.
Proof. Note that $f(0)=0$ and $f(-x)=-f(x)$ for all $x \in X$ since f is an odd mapping. Putting $y=z=0$ in (2.ii) and then replacing
x by $2 x$, we have

$$
\begin{equation*}
\left\|a f\left(\frac{2 x}{b}\right)-\frac{c}{2} f(2 x)\right\| \leq \frac{1}{2} \varphi(2 x, 0,0) \tag{2.1}
\end{equation*}
$$

for all $x \in X$. Putting $y=x$ and $z=0$ in (2.ii), we have

$$
\begin{equation*}
\left\|a f\left(\frac{2 x}{b}\right)-c f(x)\right\| \leq \frac{1}{2} \varphi(x, x, 0) \tag{2.2}
\end{equation*}
$$

for all $x \in X$. By (2.1) and (2.2), we have

$$
\begin{equation*}
\|f(2 x)-2 f(x)\| \leq \frac{1}{c}(\varphi(2 x, 0,0)+\varphi(x, x, 0)) \tag{2.3}
\end{equation*}
$$

for all $x \in X$. By (2.3), we have

$$
\begin{equation*}
\left\|f(x)-\frac{f(2 x)}{2}\right\| \leq \frac{1}{2 c}(\varphi(2 x, 0,0)+\varphi(x, x, 0)) \tag{2.4}
\end{equation*}
$$

for all $x \in X$. Using (2.4), we have

$$
\begin{align*}
\left\|\frac{f\left(2^{n} x\right)}{2^{n}}-\frac{f\left(2^{n+1} x\right)}{2^{n+1}}\right\| & =\frac{1}{2^{n}}\left\|f\left(2^{n} x\right)-\frac{f\left(2 \cdot 2^{n} x\right)}{2}\right\| \\
& \leq \frac{1}{2^{n+1} c}\left(\varphi\left(2^{n+1} x, 0,0\right)+\varphi\left(2^{n} x, 2^{n} x, 0\right)\right) \tag{2.5}
\end{align*}
$$

for all $x \in X$ and all positive integers n. By (2.5), we have

$$
\begin{align*}
\left\|\frac{f\left(2^{m} x\right)}{2^{m}}-\frac{f\left(2^{n} x\right)}{2^{n}}\right\| \leq & \sum_{k=m}^{n-1} \frac{1}{2^{k+1} c} \varphi\left(2^{k+1} x, 0,0\right) \\
& +\sum_{k=m}^{n-1} \frac{1}{2^{k+1} c} \varphi\left(2^{k} x, 2^{k} x, 0\right) \tag{2.6}
\end{align*}
$$

for all $x \in X$ and all positive integers m and n with $m<n$. This shows that the sequence $\left\{\frac{f\left(2^{n} x\right)}{2^{n}}\right\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\left\{\frac{f\left(2^{n} x\right)}{2^{n}}\right\}$ converges for all $x \in X$.
So we can define a mapping $A: X \rightarrow Y$ by

$$
A(x):=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}
$$

for all $x \in X$. Since $f(-x)=-f(x)$ for all $x \in X$, we have $A(-x)=$ $-A(x)$ for all $x \in X$. Also, we get

$$
\begin{aligned}
\|D A(x, y, z)\| & =\lim _{n \rightarrow \infty} \frac{1}{2^{n}}\left\|D f\left(2^{n} x, 2^{n} y, 2^{n} z\right)\right\| \\
& \leq \lim _{n \rightarrow \infty} \frac{1}{2^{n}} \varphi\left(2^{n} x, 2^{n} y, 2^{n} z\right)=0
\end{aligned}
$$

for all $x, y, z \in X$. By [6, Lemma 2], A is additive. Putting $m=0$ and letting $n \rightarrow \infty$ in (2.6), we get (2.iii).

Now, let $A^{\prime}: X \rightarrow Y$ be another additive mapping satisfying (2.iii). Then we have

$$
\begin{aligned}
\left\|A(x)-A^{\prime}(x)\right\| & =\frac{1}{2^{n}}\left\|A\left(2^{n} x\right)-A^{\prime}\left(2^{n} x\right)\right\| \\
& \leq \frac{1}{2^{n}}\left(\left\|A\left(2^{n} x\right)-f\left(2^{n} x\right)\right\|+\left\|A^{\prime}\left(2^{n} x\right)-f\left(2^{n} x\right)\right\|\right) \\
& \leq \frac{2}{2^{n+1} c}\left(\widetilde{\varphi}\left(2^{n+1} x, 0,0\right)+\widetilde{\varphi}\left(2^{n} x, 2^{n} x, 0\right)\right)
\end{aligned}
$$

which tends to zero as $n \rightarrow \infty$ for all $x \in X$. So we can conclude that $A(x)=A^{\prime}(x)$ for all $x \in X$. This proves the uniqueness of A.

Theorem 2. Let $f: X \rightarrow Y$ be an even mapping with $f(0)=0$ for which there is a function $\varphi: X^{3} \rightarrow[0, \infty)$ such that

$$
\begin{align*}
\widetilde{\varphi_{2}}(x, y, z) & :=\sum_{j=0}^{\infty} \frac{1}{4^{j}} \varphi\left(2^{j} x, 2^{j} y, 2^{j} z\right)<\infty \tag{2.iv}\\
\|D f(x, y, z)\| & \leq \varphi(x, y, z) \tag{2.v}
\end{align*}
$$

for all $x, y, z \in X$. Then there exists a unique quadratic mapping $Q: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-Q(x)\| \leq \frac{1}{4 c}\left(2 \widetilde{\varphi_{2}}(x, x, 0)+\widetilde{\varphi_{2}}(2 x, 0,0)\right) \tag{2.vi}
\end{equation*}
$$

for all $x \in X$.
Proof. Putting $y=x$ and $z=0$ in (2.v), we have

$$
\begin{equation*}
\left\|a f\left(\frac{2 x}{b}\right)-c f(x)\right\| \leq \frac{1}{2} \varphi(x, x, 0) \tag{2.7}
\end{equation*}
$$

for all $x \in X$. Putting $y=z=0$ in (2.v) and then replacing x by $2 x$, we have

$$
\begin{equation*}
\left\|a f\left(\frac{2 x}{b}\right)-\frac{c}{4} f(2 x)\right\| \leq \frac{1}{4} \varphi(2 x, 0,0) \tag{2.8}
\end{equation*}
$$

for all $x \in X$. By (2.7) and (2.8), we have

$$
\begin{equation*}
\|f(2 x)-4 f(x)\| \leq \frac{1}{c}(2 \varphi(x, x, 0)+\varphi(2 x, 0,0)) \tag{2.9}
\end{equation*}
$$

for all $x \in X$. By (2.9), we have

$$
\begin{equation*}
\left\|f(x)-\frac{f(2 x)}{4}\right\| \leq \frac{1}{4 c}(2 \varphi(x, x, 0)+\varphi(2 x, 0,0)) \tag{2.10}
\end{equation*}
$$

for all $x \in X$. Using (2.10), we have

$$
\begin{align*}
\left\|\frac{f\left(2^{n} x\right)}{4^{n}}-\frac{f\left(2^{n+1} x\right)}{4^{n+1}}\right\| & =\frac{1}{4^{n}}\left\|f\left(2^{n} x\right)-\frac{f\left(2 \cdot 2^{n} x\right)}{4}\right\| \\
& \leq \frac{1}{4^{n+1} c}\left(2 \varphi\left(2^{n} x, 2^{n} x, 0\right)+\varphi\left(2^{n+1} x, 0,0\right)\right) \tag{2.11}
\end{align*}
$$

for all $x \in X$ and all positive integers n. By (2.11), we have

$$
\begin{align*}
\left\|\frac{f\left(2^{m} x\right)}{4^{m}}-\frac{f\left(2^{n} x\right)}{4^{n}}\right\| \leq & \sum_{k=m}^{n-1} \frac{2}{4^{k+1} c} \varphi\left(2^{k} x, 2^{k} x, 0\right) \\
& +\sum_{k=m}^{n-1} \frac{1}{4^{k+1} c} \varphi\left(2^{k+1} x, 0,0\right) \tag{2.12}
\end{align*}
$$

for all $x \in X$ and all nonnegative integers m and n with $m<n$. This shows that the sequence $\left\{\frac{f\left(2^{n} x\right)}{4^{n}}\right\}$ is a Cauchy sequence for all $x \in X$.

Since Y is complete, the sequence $\left\{\frac{f\left(2^{n} x\right)}{4^{n}}\right\}$ converges for all $x \in X$. So we can define a mapping $Q: X \rightarrow Y$ by

$$
Q(x):=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{4^{n}}
$$

for all $x \in X$. We have $Q(0)=0, Q(-x)=Q(x)$ and

$$
\begin{aligned}
\|D Q(x, y, z)\| & =\lim _{n \rightarrow \infty} \frac{1}{4^{n}}\left\|D f\left(2^{n} x, 2^{n} y, 2^{n} z\right)\right\| \\
& \leq \lim _{n \rightarrow \infty} \frac{1}{4^{n}} \varphi\left(2^{n} x, 2^{n} y, 2^{n} z\right)=0
\end{aligned}
$$

for all $x, y, z \in X$. By [6, Lemma 1], Q is quadratic. Putting $m=$ 0 and letting $n \rightarrow \infty$ in (2.12), we get (2.vi). The proof of the uniqueness of Q is similar to the proof of Theorem 1.

Theorem 3. Let $f: X \rightarrow Y$ be a mapping with $f(0)=0$ for which there is a function $\varphi: X^{3} \rightarrow[0, \infty)$ satisfying (2.i) and (2.ii). Then there exist a unique additive mapping $A: X \rightarrow Y$ and a unique quadratic mapping $Q: X \rightarrow Y$ such that

$$
\begin{align*}
&\left\|\frac{f(x)-f(-x)}{2}-A(x)\right\| \leq \frac{1}{4 c}(\widetilde{\varphi}(2 x, 0,0)+\widetilde{\varphi}(x, x, 0) \\
&+\widetilde{\varphi}(-2 x, 0,0)+\widetilde{\varphi}(-x,-x, 0) \tag{2.vii}\\
&\text { 2.vii }) \\
&\left\|\frac{f(x)+f(-x)}{2}-Q(x)\right\| \leq \frac{1}{8 c}\left(2 \widetilde{\varphi_{2}}(x, x, 0)+\widetilde{\varphi_{2}}(2 x, 0,0)\right. \tag{2.viii}\\
&+2 \widetilde{\varphi_{2}}(-x,-x, 0)+\widetilde{\varphi_{2}}(-2 x, 0,0), \\
& \text { 2.viii } \tag{2.ix}\\
&\|f(x)-Q(x)-A(x)\| \leq \frac{1}{4 c}(\widetilde{\varphi}(2 x, 0,0)+\widetilde{\varphi}(x, x, 0)) \\
&+\frac{1}{4 c}(\widetilde{\varphi}(-2 x, 0,0)+\widetilde{\varphi}(-x,-x, 0)) \\
&+\frac{1}{8 c}\left(2 \widetilde{\varphi_{2}}(x, x, 0)+\widetilde{\varphi_{2}}(2 x, 0,0)\right) \\
&+\frac{1}{8 c}\left(2 \widetilde{\varphi_{2}}(-x,-x, 0)+\widetilde{\varphi_{2}}(-2 x, 0,0)\right)
\end{align*}
$$

for all $x \in X$.
Proof. Let $g(x):=\frac{1}{2}(f(x)-f(-x))$ for all $x \in X$. Then $g(-x)=$ $-g(x)$ and

$$
\|D g(x, y, z)\| \leq \frac{1}{2}(\varphi(x, y, z)+\varphi(-x,-y,-z))
$$

for all $x, y, z \in X$. By the same reasoning as in the proof of Theorem 1 , there exists a unique additive mapping $A: X \rightarrow Y$ satisfying (2.vii).

Note that $\widetilde{\varphi_{2}}(x, y, z)<\infty$ since $\widetilde{\varphi_{2}}(x, y, z)<\widetilde{\varphi}(x, y, z)$.
Let $q(x):=\frac{1}{2}(f(x)+f(-x))$ for all $x \in X$. Then $q(0)=0$, $q(-x)=q(x)$ and

$$
\|D q(x, y, z)\| \leq \frac{1}{2}(\varphi(x, y, z)+\varphi(-x,-y,-z))
$$

for all $x, y, z \in X$. By the same reasoning as in the proof of Theorem 2, there exists a unique quadratic mapping $Q: X \rightarrow Y$ satisfying (2.viii). Clearly, we have (2.ix) for all $x \in X$.

Corollary 4. Let θ and $p(0<p<1)$ be positive real numbers. Let $f: X \rightarrow Y$ be a mapping with $f(0)=0$ such that

$$
\|D f(x, y, z)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right)
$$

for all $x, y, z \in X$. Then there exist a unique additive mapping A : $X \rightarrow Y$ and a unique quadratic mapping $Q: X \rightarrow Y$ such that

$$
\begin{aligned}
\left\|\frac{f(x)-f(-x)}{2}-A(x)\right\| & \leq \frac{\theta}{c}\left(\frac{2+2^{p}}{2-2^{p}}\right)\|x\|^{p}, \\
\left\|\frac{f(x)+f(-x)}{2}-Q(x)\right\| & \leq \frac{\theta}{c}\left(\frac{4+2^{p}}{4-2^{p}}\right)\|x\|^{p}, \\
\|f(x)-Q(x)-A(x)\| & \leq \frac{\theta}{c}\left(\frac{2+2^{p}}{2-2^{p}}+\frac{4+2^{p}}{4-2^{p}}\right)\|x\|^{p}
\end{aligned}
$$

for all $x \in X$.
Proof. Define $\varphi(x, y, z)=\|x\|^{p}+\|y\|^{p}+\|z\|^{p}$ and apply Theorem 3.

References

1. P.W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76-86.
2. S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64.
3. P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
4. D.H. Hyers, On the stability of the linear functional equation, Pro. Nat'l. Acad. Sci. U.S.A. 27 (1941), 222-224.
5. S. Lee and K. Jun, Hyers-Ulam-Rassias stability of a quadratic type functional equation, Bull. Korean Math. Soc. 40 (2003), 183-193.
6. S. Lee and C. Park, Hyers-Ulam-Rassias stability of a functional equation in three variables, J. Chungcheong Math. Soc. 16 (2) (2003), 11-21.
7. Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
8. F. Skof, Proprietà locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129.

*

Department of Mathematics
Chungnam National University
Daejeon 305-764, Korea
E-mail: cgpark@cnu.ac.kr

```
**
Department of Mathematics
Chungnam National University
Daejeon 305-764, Korea
```

