ON THE GENERALIZED HYERS-ULAM STABILITY OF A CUBIC FUNCTIONAL EQUATION

Kil-Woung Jun* and Sang-Baek Lee**

Abstract

The generalized Hyers-Ulam stability problems of the cubic functional equation $$
\begin{aligned} & f(x+y+z)+f(x+y-z)+2 f(x-y)+4 f(y) \\ & =f(x-y+z)+f(x-y-z) \\ & \quad+2 f(x+y)+2 f(y+z)+2 f(y-z) \end{aligned}
$$ shall be treated under the approximately odd condition and the behavior of the cubic mappings and the additive mappings shall be investigated. The generalized Hyers-Ulam stability problem for functional equations had been posed by Th.M. Rassias and J. Tabor [7] in 1992.

1. Introduction

In 1940, Ulam proposed the general Ulam stability problem (see [8]):
"When is it true that by slightly changing the hypothesis of a theorem one can still assert that the thesis of the theorem remains true or approximately true?"

In 1941, this problem was solved by Hyers [3] in the case of Banach spaces. Thereafter, this type of stability is called the Hyers-Ulam stability. In 1978 Th. M. Rassias [5] provided a remarkable generalization of the Hyers-Ulam stability of mappings by considering variables.

This fact rekindled interest in the field. Since then a number of papers have appeared in the subject([6], [1]). Such type of stability is now called the Hyers-Ulam-Rassias stability of functional equations. For the function case, the reader is referred to Găvruta [2]. Throughout this paper, let X be a real normed space and Y be a real Banach space

[^0]in the case of functional inequalities, as well as let X and Y be real linear spaces for the case of functional equations.

We here introduce a theorem of Găvruta [2]:
Theorem. Let G be an abelian group and E a Banach space. Denote by $\varphi: G \times G \rightarrow[0, \infty)$ a function such that

$$
\Phi(x, y):=\sum_{i=1}^{\infty} 2^{-i} \varphi\left(2^{i-1} x, 2^{i-1}\right)<\infty
$$

for all $x, y \in G$. If a function $f: G \rightarrow E$ satisfies the inequality

$$
\|f(x+y)-f(x)-f(y)\| \leq \varphi(x, y)
$$

for any $x, y \in G$, then there exists a unique additive function $A: G \rightarrow E$ such that

$$
\|f(x)-A(x)\| \leq \Phi(x, x)
$$

for each $x \in G$.
For a mapping $f: X \rightarrow Y$, consider the following functional equations:

$$
\begin{align*}
& f(x+y+z)+f(x+y-z)+2 f(x)+2 f(y) \\
& \quad=2 f(x+y)+f(x+z)+f(x-z)+f(y+z)+f(y-z) \tag{1}
\end{align*}
$$

and

$$
\begin{align*}
& f(x+y+z)+f(x+y-z)+2 f(x-y)+4 f(y) \\
& \quad=f(x-y+z)+f(x-y-z)+2 f(x+y) \\
& \quad+2 f(y+z)+2 f(y-z) \tag{2}
\end{align*}
$$

for all $x, y, z \in X$. Recently, H. Kim [4] investigated the solution and the stability of the functional equation (1). The general Hyers-Ulam stability problem had been posed for the first time by Th.M. Rassias and J. Tabor [7] in the year 1992.

2. Solution of the functional equation (2)

In this section, we investigate the solution of the functional equation (2).

Theorem 1. A mapping $f: X \rightarrow Y$ satisfies the cubic functional equation (2) for all $x, y, z \in X$ if and only if there exist two mappings $B: X^{3} \rightarrow Y$ and $A: X \rightarrow Y$ such that $f(x)=B(x, x, x)+A(x)+f(0)$ for all $x \in X$, where B is symmetric for each fixed one variable and is additive for each fixed two variables and A is additive.

Proof. First we assume that f is a solution of (1). Setting $g(x)=$ $f(x)-f(0)$, we get g is also a solution of (1) and $g(0)=0$. Next we assume that f is a solution of (2). Setting $h(x)=f(x)-f(0)$, we get h is also a solution of (2) and $h(0)=0$. Thus we may assume without loss of generality that $f(0)=0$.

First we show that (1) implies (2). Replacing y by $-y$ in (1), we obtain that f satisfies

$$
\begin{align*}
& f(x-y+z)+f(x-y-z)+2 f(x)+2 f(-y) \\
& \quad=2 f(x-y)+f(x+z)+f(x-z)+f(-y+z)+f(-y-z) \tag{3}
\end{align*}
$$

for all $x, y, z \in X$. Putting $x=y=0$ in (1), one can obtain that f is odd. By (1) and (3), we obtain that f satisfies (2) for all $x, y, z \in X$.

Next we show that (2) implies (1). Interchanging x and y in (2), we get that

$$
\begin{align*}
& f(y+x+z)+f(y+x-z)+2 f(y-x)+4 f(x) \\
& =f(y-x+z)+f(y-x-z)+2 f(y+x) \\
& \quad+2 f(x+z)+2 f(x-z) \tag{4}
\end{align*}
$$

for all $x, y, z \in X$. Putting $x=y=0$ in (2), one can obtain that f is odd. By (2) and (4), we obtain that

$$
\begin{align*}
& f(x-y+z)+f(x-y-z)+2 f(x)-2 f(y) \\
& \quad=2 f(x-y)+f(x+z)+f(x-z)-f(y-z)-f(y+z) \tag{5}
\end{align*}
$$

for all $x, y, z \in X$. Replacing y by $-y$ in (5), we obtain that f satisfies (1) for all $x, y, z \in X$.

By Theorem 2.4 in [4], the proof is completed.

3. Stability of the cubic equation (2)

In this section, we investigate the generalized Hyers-Ulam stability of the functional equation (2) in the spirit of Găvruta.

Let $\varphi: X^{3} \rightarrow[0, \infty)$ and $\psi: X \rightarrow[0, \infty)$ be two functions such that

$$
\begin{align*}
& \Phi(x, y, z):=\frac{1}{6} \sum_{i=1}^{\infty}\left(\frac{1}{2^{i}}-\frac{1}{8^{i}}\right)\left(2 \varphi\left(2^{i-1} x, 2^{i-1} y,-2^{i-1} z\right)\right. \\
& \left.\quad+2 \varphi\left(-2^{i-1} x,-2^{i-1} y, 2^{i-1} z\right)+\varphi\left(2^{i-1} x, 2^{i} y,, 2^{i-1} z\right)\right)<\infty \tag{6}\\
& \Psi(x):=\frac{2}{7} \psi(0)
\end{align*}
$$

$$
+\frac{1}{6} \sum_{i=1}^{\infty}\left(\frac{1}{2^{i}}-\frac{1}{8^{i}}\right)\left(12 \psi\left(2^{i-1} x\right)+9 \psi\left(2^{i} x\right)+2 \psi\left(3 \cdot 2^{i-1} x\right)\right)<\infty
$$

for all $x, y, z \in X$.
For simplicity of calculation in this section, we use the notation $\varphi_{1}(x):=\varphi(x, x,-x), \varphi_{2}(x):=\varphi(x, 2 x, x), \psi_{1}(x):=\psi(3 x)+4 \psi(2 x)+$ $5 \psi(x), \psi_{2}(x):=\psi(2 x)+2 \psi(x)+\frac{1}{2} \psi(0)$, and $\chi(x):=\frac{1}{3} \varphi_{1}(x)+\frac{1}{3} \varphi_{1}(-x)+$ $\frac{1}{6} \varphi_{2}(x)+\frac{1}{3} \psi_{1}(x)+\frac{1}{6} \psi_{2}(x)$ for all $x \in X$.

Lemma 2. Let $f: X \rightarrow Y$ be a mapping satisfying

$$
\begin{gathered}
\| f(x+y+z)+f(x+y-z)+2 f(x-y)+4 f(y) \\
\quad-f(x-y+z)-f(x-y-z)-2 f(x+y) \\
\quad-2 f(y+z)-2 f(y-z) \| \leq \varphi(x, y, z)
\end{gathered}
$$

and

$$
\begin{equation*}
\|f(x)+f(-x)\| \leq \psi(x) \tag{8}
\end{equation*}
$$

for all $x, y, z \in X$. Then

$$
\begin{aligned}
\| f(x)-\frac{1}{6}\left(\frac{8}{2^{n}}-\frac{2}{8^{n}}\right) & f\left(2^{n} x\right)+\frac{1}{6}\left(\frac{1}{2^{n}}-\frac{1}{8^{n}}\right) f\left(2^{n+1} x\right) \| \\
& \leq \sum_{i=1}^{n}\left(\frac{1}{2^{i}}-\frac{1}{8^{i}}\right) \chi\left(2^{i-1} x\right)
\end{aligned}
$$

for all $x \in X$ and $n \in \mathbf{N}$.
Proof. Putting $y=x$ and $z=-x$ in (7) it follows that

$$
\begin{equation*}
\|4 f(x)-f(-x)-4 f(2 x)+f(3 x)\| \leq \varphi_{1}(x) \tag{10}
\end{equation*}
$$

for all $x \in X$. Substitute $-x$ for x in (10), then

$$
\begin{equation*}
\|-4 f(-x)+f(x)+4 f(-2 x)-f(-3 x)\| \leq \varphi_{1}(-x) \tag{11}
\end{equation*}
$$

for all $x \in X$. From (10) and (11), one can obtain that

$$
\begin{aligned}
& \|5 f(x)-5 f(-x)-4 f(2 x)+4 f(-2 x)+f(3 x)-f(-3 x)\| \\
& \quad \leq \varphi_{1}(x)+\varphi_{1}(-x)
\end{aligned}
$$

for all $x \in X$. By (8),

$$
\begin{aligned}
2 \| & 5 f(x)-4 f(2 x)+f(3 x) \| \\
& \leq\|5 f(x)-5 f(-x)-4 f(2 x)+4 f(-2 x)+f(3 x)-f(-3 x)\| \\
& +\|5 f(x)+5 f(-x)\|+\|-4 f(2 x)-4 f(-2 x)\|+\|f(3 x)+f(-3 x)\| \\
(12) & \leq \varphi_{1}(x)+\varphi_{1}(-x)+5 \psi(x)+4 \psi(2 x)+\psi(3 x) \\
& =\varphi_{1}(x)+\varphi_{1}(-x)+\psi_{1}(x)
\end{aligned}
$$

for all $x \in X$. Putting $y=2 x$ and $z=x$ in (7) it follows that

$$
\begin{aligned}
& \| f(4 x)+f(2 x)+2 f(-x)+4 f(2 x)-f(0) \\
& \quad-f(-2 x)-2 f(3 x)-2 f(3 x)-2 f(x) \| \\
& (13)=\|f(4 x)-4 f(3 x)+5 f(2 x)-f(-2 x)-2 f(x)+2 f(-x)-f(0)\| \\
& \quad \leq \varphi_{2}(x)
\end{aligned}
$$

for all $x \in X$. By (8), we have

$$
\begin{equation*}
\|f(0)\| \leq \frac{1}{2} \psi(0) \tag{14}
\end{equation*}
$$

By (8), (13) and (14), we have

$$
\begin{equation*}
\|f(4 x)-4 f(3 x)+6 f(2 x)-4 f(x)\| \leq \varphi_{2}(x)+\psi_{2}(x) \tag{15}
\end{equation*}
$$

By (12) and (15), we have

$$
\begin{align*}
& \|16 f(x)-10 f(2 x)+f(4 x)\| \tag{16}\\
& \leq 2 \varphi_{1}(x)+2 \varphi_{1}(-x)+\varphi_{2}(x)+2 \psi_{1}(x)+\psi_{2}(x)=6 \chi(x)
\end{align*}
$$

for all $x \in X$. By (16), we obtain that

$$
\begin{aligned}
& \left\|f(x)-\frac{1}{6}\left(\frac{8}{2^{n+1}}-\frac{2}{8^{n+1}}\right) f\left(2^{n+1} x\right)+\frac{1}{6}\left(\frac{1}{2^{n+1}}-\frac{1}{8^{n+1}}\right) f\left(2^{n+2} x\right)\right\| \\
& \leq\left\|f(x)-\frac{1}{6}\left(\frac{8}{2^{n}}-\frac{2}{8^{n}}\right) f\left(2^{n} x\right)+\frac{1}{6}\left(\frac{1}{2^{n}}-\frac{1}{8^{n}}\right) f\left(2^{n+1} x\right)\right\| \\
& +\frac{1}{6}\left(\frac{1}{2^{n+1}}-\frac{1}{8^{n+1}}\right)\left\|16 f\left(2^{n} x\right)-10 f\left(2^{n+1} x\right)+f\left(2^{n+2} x\right)\right\| \\
& \leq \sum_{i=1}^{n}\left(\frac{1}{2^{i}}-\frac{1}{8^{i}}\right) \chi\left(2^{i-1} x\right)+\left(\frac{1}{2^{n+1}}-\frac{1}{8^{n+1}}\right) \chi(x) \\
& =\sum_{i=1}^{n+1}\left(\frac{1}{2^{i}}-\frac{1}{8^{i}}\right) \chi\left(2^{i-1} x\right)
\end{aligned}
$$

for all $x \in X$ and $n \in \mathbf{N}$.
Theorem 3. Let $f: X \rightarrow Y$ be a mapping satisfying (7) and (8) for all $x, y, z \in X$. Then there exist two mappings $B: X^{3} \rightarrow Y$ and $A: X \rightarrow Y$ which satisfy the inequality

$$
\begin{equation*}
\|f(x)-B(x, x, x)-A(x)\| \leq \Phi(x, x, x)+\Psi(x) \tag{17}
\end{equation*}
$$

for all $x \in X$, where B is symmetric for each fixed one variable and is additive for each fixed two variable and A is additive.

Proof. We define

$$
g_{n}(x):=\frac{1}{6}\left(\frac{8}{2^{n}}-\frac{2}{8^{n}}\right) f\left(2^{n} x\right)-\frac{1}{6}\left(\frac{1}{2^{n}}-\frac{1}{8^{n}}\right) f\left(2^{n+1} x\right)
$$

for all $x \in X$ and all $n \in \mathbb{N}$. By (15), we obtain that

$$
\begin{aligned}
& \left\|g_{n+1}(x)-g_{n}(x)\right\| \\
& =\| \frac{1}{6}\left(\frac{8}{2^{n+1}}-\frac{2}{8^{n+1}}\right) f\left(2^{n+1} x\right)-\frac{1}{6}\left(\frac{1}{2^{n+1}}-\frac{1}{8^{n+1}}\right) f\left(2^{n+2} x\right) \\
& \quad-\frac{1}{6}\left(\frac{8}{2^{n}}-\frac{2}{8^{n}}\right) f\left(2^{n} x\right)+\frac{1}{6}\left(\frac{1}{2^{n}}-\frac{1}{8^{n}}\right) f\left(2^{n+1} x\right) \| \\
& =\frac{1}{6 \cdot 8^{n+1}} \|\left(8 \cdot 4^{n+1}-2\right) f\left(2^{n+1} x\right)-\left(4^{n+1}-1\right) f\left(2^{n+2} x\right) \\
& \quad-\left(64 \cdot 4^{n}-16\right) f\left(2^{n} x\right)+\left(8 \cdot 4^{n}-8\right) f\left(2^{n+1} x\right) \| \\
& \leq \frac{4^{n+1}}{6 \cdot 8^{n+1}}\left\|8 f\left(2^{n+1} x\right)-f\left(2^{n+2} x\right)-16 f\left(2^{n} x\right)+2 f\left(2^{n+1} x\right)\right\| \\
& \quad+\frac{1}{6 \cdot 8^{n+1}}\left\|2 f\left(2^{n+1} x\right)-f\left(2^{n+2} x\right)-16 f\left(2^{n} x\right)+8 f\left(2^{n+1} x\right)\right\| \\
& =\frac{4^{n+1}+1}{6 \cdot 8^{n+1}}\left\|16 f\left(2^{n} x\right)-10 f\left(2^{n+1} x\right)+f\left(2^{n+2} x\right)\right\| \\
& \leq \frac{4^{n+1}+1}{8^{n+1}} \chi\left(2^{n} x\right)
\end{aligned}
$$

for all $n \in \mathbb{N}$. For $n \geq m$,

$$
\begin{align*}
\left\|g_{n}(x)-g_{m}(x)\right\| & \leq \sum_{i=m}^{n-1}\left\|g_{i+1}(x)-g_{i}(x)\right\| \\
& \leq \sum_{i=m}^{n-1} \frac{4^{i+1}+1}{8^{i+1}} \chi\left(2^{i} x\right) \tag{18}
\end{align*}
$$

for all $x \in X$. By (5), since the right-hand side of the inequality (18) tends to zero as m tends to infinity, the sequence $\left\{g_{n}(x)\right\}$ is a Cauchy sequence. Therefore, we may apply a direct method to the definition of g. Define

$$
g(x):=\lim _{n \rightarrow \infty} g_{n}(x)
$$

for all $x \in X$. The inequality (6) implies that

$$
\begin{aligned}
& \| g_{n}(x+y+z)+g_{n}(x+y-z)+2 g_{n}(x-y)+4 g_{n}(y)-g_{n}(x-y+z) \\
& \quad-g_{n}(x-y-z)-2 g_{n}(x+y)-2 g_{n}(y+z)-2 g_{n}(y-z) \|
\end{aligned}
$$

$$
\begin{aligned}
\leq & \frac{1}{6}\left(\frac{8}{2^{n}}-\frac{2}{8^{n}}\right) \varphi\left(2^{n} x, 2^{n} y, 2^{n} z\right) \\
& +\frac{1}{6}\left(\frac{1}{2^{n}}-\frac{1}{8^{n}}\right) \varphi\left(2^{n+1} x, 2^{n+1} y, 2^{n+1} z\right)
\end{aligned}
$$

for all $x, y, z \in X$ and all $n \in \mathbb{N}$. Letting n tend to infinity in the last inequality, by (3), g satisfies (2). By Theorem 1, there exist two mappings $B: X^{3} \rightarrow Y$ and $A: X \rightarrow Y$ such that $g(x)=B(x, x, x)+$ $A(x)+g(0)$ for all $x \in X$, where B is symmetric for each fixed one variable and is additive for each fixed two variables and A is additive. By the definition of g, one can easily see $g(0)=0$. The validity of inequality (17) follows directly from Lemma 2 and the definition of g. Hence, the proof is completed.

References

1. J.-H. Bae and K.-W. Jun, On the generalized Hyers-Ulam-Rassias stability of an n-dimensional quadratic functional equation, J. Math. Anal. Appl. 258 (2001), 183-193.
2. P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings,, J. Math. Anal. Appl. 184 (1994), 431-436.
3. D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.
4. H.M. Kim, On a cubic functional equation, preprint.
5. Th.M. Rassias, On the stability of linear mappings in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
6. Th.M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), 23-130.
7. Th.M. Rassias and J. Tabor, What is left of Hyers-Ulam stability?, J. Nat. Geo. 1 (1992), 65-69.
8. S.M. Ulam, A Collection of Mathematical Problems, Interscience Publishers, New York, 1968, p.63.

\author{

*
 Department of Mathematics
 Chungnam National University
 305-764 Daejeon
 Republic of Korea
 E-mail: kwjun@math.cnu.ac.kr
}
**
Department of Mathematics
Chungnam National University
305-764 Daejeon
Republic of Korea
E-mail: mcsquarelsb@hanmail.net

[^0]: Received March 29, 2006.
 2000 Mathematics Subject Classification: Primary 39B52, 39B72.
 Key words and phrases: Ulam stability problem, Hyers-Ulam stability, approximately even (or odd) mapping.

