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ON THE GENERALIZED HYERS-ULAM STABILITY
OF A CUBIC FUNCTIONAL EQUATION

Ki-WouNc JUN* AND SANG-BAEK LEE**

ABSTRACT. The generalized Hyers—Ulam stability problems of the
cubic functional equation
F+y+2)+ f@+y - 2)+ 26— y) + 4£()
—f@—y+2)+ fla—y—2)
+2f(z+y) +2f(y+2) +2f(y — 2)

shall be treated under the approximately odd condition and the
behavior of the cubic mappings and the additive mappings shall
be investigated. The generalized Hyers—Ulam stability problem for

functional equations had been posed by Th.M. Rassias and J. Tabor
[7] in 1992.

1. Introduction

In 1940, Ulam proposed the general Ulam stability problem (see [8]):

“When is it true that by slightly changing the hypothesis of a theo-
rem one can still assert that the thesis of the theorem remains true or
approximately true?’

In 1941, this problem was solved by Hyers [3] in the case of Banach
spaces. Thereafter, this type of stability is called the Hyers—Ulam sta-
bility. In 1978 Th. M. Rassias [5] provided a remarkable generalization
of the Hyers—Ulam stability of mappings by considering variables.

This fact rekindled interest in the field. Since then a number of
papers have appeared in the subject([6], [1]). Such type of stability
is now called the Hyers—Ulam—-Rassias stability of functional equations.
For the function case, the reader is referred to Gavruta [2]. Throughout
this paper, let X be a real normed space and Y be a real Banach space

Received March 29, 2006.

2000 Mathematics Subject Classification: Primary 39B52, 39B72.

Key words and phrases: Ulam stability problem, Hyers—Ulam stability, approxi-
mately even (or odd) mapping.



190 K.-W. Jun, S.-B. Lee

in the case of functional inequalities, as well as let X and Y be real
linear spaces for the case of functional equations.

We here introduce a theorem of Gavruta [2]:

THEOREM. Let G be an abelian group and E a Banach space. Denote
by ¢ : G X G — [0,00) a function such that

(o9}
O(x,y) := ZQ_icp(Qi_l:r,Qi_l) < 00
i=1

for all x,y € G. If a function f: G — E satisfies the inequality
1f(x+y) = f(z) = fW)ll < e, y)

for any x,y € G, then there exists a unique additive function A : G — FE
such that

If(z) — A(z)|| < ®(z, z)
for each x € G.

For a mapping f : X — Y, consider the following functional equa-
tions:
flaty+2)+ flaty—2)+2f(x) +2f(y)
(1) =2fz+y)+f@+2)+fla—2)+fly+2)+fly—2)

and

f@+ry+ta)+flz+y—2)+2f(z—y) +4f(y)
=fl@e—y+2)+fle-y—2)+2f(z+y)
(2) 2f(y+2)+2f(y - 2)
for all z,y,z € X. Recently, H. Kim [4] investigated the solution and
the stability of the functional equation (1). The general Hyers-Ulam

stability problem had been posed for the first time by Th.M. Rassias
and J. Tabor [7] in the year 1992.

2. Solution of the functional equation (2)
In this section, we investigate the solution of the functional equation

(2).

THEOREM 1. A mapping f : X — Y satisfies the cubic functional
equation (2) for all x,y,z € X if and only if there exist two mappings
B:X3—Y and A: X — Ysuch that f(z) = B(x,z,2) + A(z) + £(0)
for all x € X, where B is symmetric for each fized one variable and is
additive for each fized two variables and A is additive.
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Proof. First we assume that f is a solution of (1). Setting g(x) =
f(z) — f(0), we get g is also a solution of (1) and g(0) = 0. Next we
assume that f is a solution of (2). Setting h(z) = f(z) — f(0), we get
h is also a solution of (2) and h(0) = 0. Thus we may assume without
loss of generality that f(0) = 0.

First we show that (1) implies (2). Replacing y by —y in (1), we
obtain that f satisfies

fl@—y+2)+ fle—y—2)+2f(z)+2f(-y)
(3)  =2f(@—y)+ fle+2)+ o —2)+ [~y +2)+ f(—y—2)
for all x,y,z € X. Putting x = y = 0 in (1), one can obtain that f is
odd. By (1) and (3), we obtain that f satisfies (2) for all z,y,z € X.

Next we show that (2) implies (1). Interchanging = and y in (2), we

get that
flyta+2)+fly+o—2)+2f(y—x)+4f(2)
=fly—z+2)+fly—v—2)+2f(y+2)
(4) +2f(x +2) +2f(z — 2)
for all z,y,z € X. Putting z = y = 0 in (2), one can obtain that f is
odd. By (2) and (4), we obtain that

flx—y+2)+ flz—y—2)+2f(z) - 2f(y)
(5) =2f(zx—y)+flx+2)+ flr—2)-fly—2) - fly+2)

for all z,y,z € X. Replacing y by —y in (5), we obtain that f satisfies
(1) for all x,y,z € X.
By Theorem 2.4 in [4], the proof is completed. [J

3. Stability of the cubic equation (2)
In this section, we investigate the generalized Hyers—Ulam stability

of the functional equation (2) in the spirit of Gavruta.
Let ¢ : X3 —[0,00) and v : X — [0,00) be two functions such that

1 - 1 1 i— i— i—
q)(xvyaz) = 6 Z ( - > (290(2 1'1:72 1y7 —2 12)

=1 2i 8i
(6) +2p(—2" e, — 27y, 207 2) 4 (27 e, 20y, , 271 2)) < oo,
2
U(z) = -v(0)
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+ - 3 < - > (12027 'z) + 99(2'2) + 2¢(3 - 2" '2)) < o0
1

for all z,y,z € X.

For simplicity of calculation in this section, we use the notation
901(1:) = QO(l’,l‘, —LL‘), 302(:1:) = Qf(l',2l’,l’), wl(w) ::1 w(?”«’?) +14¢(2$) +
5(x), Ya(x) := 1(22) +2¢(x)+31(0), and x(2) := 31(z)+501(—2)+
%ﬁpg(l’) + %11}1(33) + %d)g(m) for all z € X.

LEMMA 2. Let f : X — Y be a mapping satisfying

If(x+y+2)+flz+y—2)+2f(z—y)+4f(y)
—f@—y+z)—floe—y—z)-2f(z+y)

(7) =2f(y+2) = 2f(y — 2)|| < ¢(=,y,2)
and
(8) [ f(x) + f(=2)| < (z)

for all x,y,z € X. Then

10 -1 (3 -3 ) @0+ ¢ (- ) Fea)

forall z € X and n € N.
Proof. Putting y = z and z = —z in (7) it follows that

(10) [4f(x) = f(=2) = 4f(2x) + fBz)| < ¢1(2)
for all z € X. Substitute —z for z in (10), then
(11) | = 4f(=z) + f(z) +4f(=22) — f(=32)| < ¢1(—2)

for all z € X. From (10) and (11), one can obtain that
15f(2) = 5f(—x) —4f(2x) + 4f(=2z) + f(3z) — f(=3)|
< ¢1(z) + o1 ()
for all z € X. By (8),
2[|5f(x) — 4f(2x) + f(32)||

<|5f(2) = 5f (=) — 4f(22) + 4f(=22) + f(3z) — f(=32)|

HI5F (@) + 5 (=)l + | = 4f (22) — 4f (=22)[| + || f (32) + f(=32)]|
(12) < p1(2) + pr(=2) + 59p(x) + 49 (2x) + (3x)

= @1(x) + e1(=z) + P (z)
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for all z € X. Putting y = 2z and z = z in (7) it follows that

1 (42) + f(22) + 2f(—x) + 4 (2z) — f(0)
—f(=2z) = 2f(3x) — 2f(3z) — 2f (z)]|
(13)= [[f(4z) — 4f (3z) +5f (2z) — f(—22) — 2f (z) + 2f (—z) — F(0)]|
< ¢a2(x)
for all x € X. By (8), we have

(14) 1A O <

By (8), (13) and (14), we have

(15)  [If(4x) = 4f(3z) + 6 (2z) — 4f (z)[| < pa(x) + a(2)
By (12) and (15), we have

(16)  [|16f(z) = 10f(2z) + f(4)|
< 2¢1(2) + 201(=) + @2(2) + 2¢1(2) + Ya(x) = 6x(x)
for all z € X. By (16), we obtain that

8 2

< |f(z) - & (; - 82n) f2n) + é <21n — 81n> f@ )|

1
S0(0).

1 1 1
MG <2”+1 B 8n+1> 116 f(2"z) — 10f (2" a) 4+ f(27F22)||

/11 i 1 1
= (21'_81'>X(2 1x)+<2n+1—8n+1>x(w)

n+1
1 1 .

i=1
for all x € X and n € N. [J
THEOREM 3. Let f : X — Y be a mapping satisfying (7) and
for all x,y,z € X. Then there exist two mappings B : X3 — Y
A: X =Y which satisfy the inequality

(17) [f(x) = B(z,z,x) = A(z)|| < @(z,z,2) + V()

for all x € X,where B is symmetric for each fixed one variable and is
additive for each fized two variable and A is additive.

(8)
and
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Proof. We define
(B 2 gy (L L pgnn
gnl@) =5 (2% 8") UCE (2% 8") G
for all x € X and all n € N. By (15), we obtain that
1gnt1(z) — gn (@)

1/ 8 2 ., 1/ 1 1 .
’6 <2n+1_8n+1> f@ ) - 2 (2n+1_ 8n+1>f(2 )

—é (; - 82n) f2) + é (21” - 81"> f(2”+1w)H
- W{MH(S AL 2) F(27 ) — (47— 1) f(27 )

—(64-4™ — 16) f(2"z) + (8- 4" — 8) f(2"2)]|
< (;P:;LHSJ”(Q"Jrlx) — f(2"Px) —16f(2"x) + 2f (2" a) ||

+ﬁ\}2f(2"“:r) — f(2"22) — 16f(2"z) + 8f(2" )|

4n+1_|_1
~ 6.8

4n+1 + 1
< WX(QHQU)

|16£(2"z) — 10£(2"'z) + f(2" )|

for all n € N. For n > m,

n—1
lgn(z) = gm (@) < Z 1gi+1(x) = gi(@)]|

n—1 .
4z+1_|_1 )
(18) < ZwX(Q%)
i=m

for all z € X. By (5), since the right-hand side of the inequality (18)
tends to zero as m tends to infinity, the sequence {g,(z)} is a Cauchy
sequence. Therefore, we may apply a direct method to the definition of

g. Define
g(z) := lim gn(z)

for all z € X. The inequality (6) implies that

lgn(z +y + 2) + gnlz +y — 2) + 290 (2 — y) + 490 (y) — gn(z —y + 2)
—gn(T —y — 2) = 20n(z + y) — 290(y + 2) — 2gn(y — 2)||
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1 /8 2
< 6 < - > p(2"x,2"y,2"2)
+5 < - ) (2, 27y, 24

for all z,y,z € X and all n € N. Letting n tend to infinity in the
last inequality, by (3), g satisfies (2). By Theorem 1, there exist two
mappings B : X3 — Y and A : X — Ysuch that g(z) = B(z,z,z) +
A(x) + g(0) for all z € X, where B is symmetric for each fixed one
variable and is additive for each fixed two variables and A is additive.
By the definition of g, one can easily see g(0) = 0. The validity of
inequality (17) follows directly from Lemma 2 and the definition of g.
Hence, the proof is completed. [J
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