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ON THE STABILITY OF AN n-DIMENSIONAL
QUADRATIC EQUATION

Kil-Woung Jun* and Sang-Baek Lee**

Abstract. Let X and Y be vector spaces. In this paper we prove
that a mapping f : X → Y satisfies the following functional equa-
tion

∑

1≤k<l≤n

(f(xk + xl) + f(xk − xl))− 2(n− 1)

n∑
i=1

f(xi) = 0

if and only if the mapping f is quadratic. In addition we investi-
gate the generalized Hyers-Ulam-Rassias stability problem for the
functional equation.

1. Introduction

The quadratic function f(x) = cx2(x ∈ R), where c is a real constant,
clearly satisfies the equation

(1.1) f(x1 + x2) + f(x1 − x2) = 2(f(x1) + f(x2)).

Hence, the equation (1.1) is called the quadratic functional equation.
In particular, every solution of the quadratic functional equation (1.1)
is said to be a quadratic function. It is well known that a function
f : X → Y between real vector spaces is a quadratic function (1.1) if and
only if there exists a unique symmetric biadditive function B : X2 → Y
such that f(x) = B(x, x) for all x ∈ X (see [1, 6]). The following prob-
lem of this kind had been formulated by Ulam during a talk before a
Mathematical Colloquium at the University of Wisconsin, Madison, in
1940. Given a metric group G(·, d), a number δ > 0 and a mapping
h : G → G which satisfies the inequality d(h(x ·y), h(x) ·h(y)) < δ for all
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x, y ∈ G, does there exist an automorphism g of G and a constant k > 0,
depending only on G, such that d(g(x), h(x)) ≤ kδ for all x ∈ G? If the
answer is affirmative, we would call the equation g(x · y) = g(x) · g(y) of
automorphism stable. The Hyers-Ulam stability of the quadratic func-
tional equation was first proved by F. Skof for a function f : X → Y ,
where X is a normed space and Y is a Banach space [11]. P.W. Cholewa
demonstrated that the theorem of Skof is also valid if X is replaced by
an abelian group [2]. Later, the Hyers-Ulam-Rassias stability of the qua-
dratic functional equation was proved by S. Czerwik [3], J.M. Rassias [8]
and Th.M. Rassias ([9, 10]). The stability problems of several functional
equations have been extensively investigated by a number of authors and
there are many interesting results concerning this problem [5, 7]. In this
paper, we will extend Eq.(1.1) to an n-dimensional quadratic functional
equation and then investigate the generalized Hyers-Ulam-Rassias sta-
bility of the n-dimensional quadratic functional equation as follows:

(1.2)
∑

1≤k<l≤n

(f(xk + xl) + f(xk − xl))− 2(n− 1)
n∑

i=1

f(xi) = 0

for all x1, · · ·, xn ∈ X, where n ≥ 2 is an integer number.

2. Solution of the functional equation (1.2)

Theorem 2.1. Let X and Y be vector spaces. A mapping f : X → Y
satisfies the functional equation (1.2) if and only if f is quadratic.

Proof. Let f be a quadratic function. Assume the equation (1.2) is
true for n by induction argument. By (1.1),

(2.1) f(xi + xn+1) + f(xi − xn+1)− 2f(xi)− 2f(xn+1) = 0

for all i = 1, · · ·, n. Adding up (1.2) and (2.1), we have the desired
equation (1.2) for n+1. Conversely, let f satisfy the equation (1.2). By
letting xi = 0 for all i = 1, 2, · · ·, n, we have f(0) = 0. Replacing xi = 0
for all i = 3, 4, · · ·, n, we obtain the equation

f(x1 + x2) + f(x1 − x2) = 2(f(x1) + f(x2)),

which implies that f is quadratic. The proof is complete.

In Section 3, we investigate the generalized Hyers-Ulam stability of
the functional equation (1.2) in the spirit of P. Găvruta [4].
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3. Stability of the quadratic equation (1.2)

In this section, let X be a vector space and Y a Banach space. For
the given mapping f : X → Y , we define

Df(x1, · · ·, xn) :=
∑

1≤k<l≤n

(f(xk + xl) + f(xk − xl))− 2(n− 1)
n∑

i=1

f(xi)

for all x1, · · · , xn ∈ X, where n ≥ 2 is an integer number. We denote by
ϕ : Xn → [0,∞) a function such that

Φ(x1, x2, · · ·, xn) :=
∞∑

k=0

(
1
4k

)
ϕ(2kx1, · · ·, 2kxn) < ∞.(3.1)

Lemma 3.1. Let a function f : X → Y satisfy f(0) = 0 and the
inequality

∥∥∥
∑

1≤k<l≤n

(f(xk + xl) + f(xk − xl))− 2(n− 1)
n∑

i=1

f(xi)
∥∥∥(3.2)

≤ ϕ(x1, x2, · · ·, xn)

for all x1, ...., xn ∈ X, where n ≥ 2 is an integer number. Then

∥∥∥f(2mx)
4m

− f(x)
∥∥∥ ≤ 1

2n(n− 1)

m−1∑

k=0

(
1
4k

)
ϕ (2kx, · · ·, 2kx)︸ ︷︷ ︸

n−times

(3.3)

for all m ∈ N and x ∈ X.

Proof. Now, we are going to prove our assertion by induction on
m ∈ N . Put x = x1 = · · · = xn in (3.2). Then we obtain

∥∥∥f(2x)
4

− f(x)
∥∥∥ ≤ 1

2n(n− 1)
ϕ(x, · · · , x).

Thus it holds good for m = 1. We assume that the assertion is true for
m. By replacing x by 2mx in the above relation and dividing 4m the
resulting inequality, then we have

∥∥∥f(2m+1x)
4m+1

− f(2mx)
4m

∥∥∥ ≤ 1
4m

1
2n(n− 1)

ϕ(2mx, · · · , 2mx).
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And so

∥∥∥f(2m+1x)
4m+1

− f(x)
∥∥∥

≤
∥∥∥f(2m+1x)

4m+1
− f(2mx)

4m

∥∥∥ +
∥∥∥f(2mx)

4m
− f(x)

∥∥∥

≤ 1
2n(n− 1)

m∑

k=0

(
1
4k

)
ϕ(2kx, · · ·, 2kx).

This completes the proof of the lemma.

Theorem 3.2. Assume that a function f : X → Y satisfies f(0) = 0
and the inequality (3.2) for all x1, x2, · · ·, xn ∈ X. Then there exists a
unique quadratic function Q : X → Y satisfying

‖f(x)−Q(x)‖ ≤ 1
2n(n− 1)

Φ (x, · · ·, x)︸ ︷︷ ︸
n−times

(3.4)

for all x ∈ X.

Proof. In order to prove convergence of the sequence
{

Qm(x) = f(2mx)
4m

}

we show that {Qm(x)} is a Cauchy sequence in Y. By (3.3), we have for
m1 > m2 > 0,

∥∥∥∥
f(2m1x)

4m1
− f(2m2x)

4m2

∥∥∥∥

=
1

4m2

∥∥∥∥
f(2m1−m2 · 2m2x)

4m1−m2
− f(2m2x)

∥∥∥∥(3.5)

≤ 1
2n(n− 1)

m1−m2−1∑

k=0

(
1

4k+m2

)
ϕ(2k+m2x, · · ·, 2k+m2x).

Since the right-hand side of the inequality tends to 0 as m2 → ∞, the
sequence {Qm(x)} is Cauchy in the Banach space Y. Therefore we may
define a function Q : X → Y by

Q(x) = lim
m→∞

f(2mx)
4m

for all x ∈ X. By letting m →∞ in (3.3), we arrive at the formula (3.4).
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Now we show that Q satisfies the functional equation (1.2) for all
x1, · · · , xn ∈ X. By definition of Q,

∥∥∥
∑

1≤k<l≤n

(Q(xk + xl) + Q(xk − xl))− 2(n− 1)
n∑

i=1

Q(xi)
∥∥∥

= lim
m→∞ 4−m

∥∥∥
∑

1≤k<l≤n

(f(2m(xk + xl)) + f(2m(xk − xl)))

−2(n− 1)
n∑

i=1

f(2mxi)
∥∥∥

≤ lim
m→∞ 4−mϕ(2mx1, · · ·, 2mxn) = 0.

Thus Theorem 2.1 implies that Q is quadratic. It only remains to claim
that Q is unique. Let Q′ : X → Y be another quadratic function which
satisfies the inequality (3.4). Since Q and Q′ are quadratic function, we
can easily show that

Q(2mx) = 4mQ(x) and Q′(2mx) = 4mQ′(x)(3.6)

for any m ∈ N . Thus, it follows from (3.4) that

‖Q(x)−Q′(x)‖ ≤ 1
4m

(‖Q(2mx)− f(2mx)‖+ ‖f(2mx)−Q′(2mx)‖)

≤ 2
4m

1
2n(n− 1)

Φ(2mx, · · ·, 2mx).

By letting m →∞, then we get that Q(x) = Q′(x) for all x ∈ X, which
completes the proof of the theorem.

Corollary 3.3. If a function f : X → Y satisfies f(0) = 0 and the
inequality

‖Df(x1, · · ·, xn)‖ ≤ ε(‖x1‖p + · · ·+ ‖xn‖p)(3.7)

for some 0 < p < 2 and for all x1, · · ·, xn ∈ X, then there exists a unique
quadratic function Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 22−p

2(n− 1)(22−p − 1)
ε‖x‖p

for all x ∈ X.

Corollary 3.4. If a function f : X → Y satisfies f(0) = 0 and the
inequality

‖Df(x1, · · ·, xn)‖ ≤ ε
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for all x1, · · ·, xn ∈ X, then there exists a unique quadratic function
Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 2ε

3n(n− 1)
for all x ∈ X.

Now, we investigate another stability question controlled by a func-
tion ϕ : Xn → [0,∞).

Theorem 3.5. Assume that a function f : X → Y satisfies the
inequality (3.2) for all x1, x2, · · ·xn ∈ X and ϕ satisfies the condition

Φ̂(x1, x2, · · ·xn) :=
∞∑

k=0

4kϕ(
x1

2k
, · · ·, xn

2k
) < ∞.

Then there exists a unique quadratic function Q : X → Y satisfying

‖f(x)−Q(x)‖ ≤ 1
2n(n− 1)

Φ̂ (x, · · ·, x)︸ ︷︷ ︸
n−times

.

Proof. The proof is similar to that of Theorem 3.2.

Corollary 3.6. If a function f : X → Y satisfies the inequality
(3.7) for some p > 2 and for all x1, · · ·, xn ∈ X, then there exists a
unique quadratic function Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 2p−2

2(n− 1)(2p−2 − 1)
ε‖x‖p

for all x ∈ X.
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