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ON THE HYERS-ULAM-RASSIAS STABILITY OF THE
GENERALIZED POLYNOMIAL FUNCTION OF

DEGREE 2

Yang-Hi Lee*

Abstract. In this paper, we prove the stability of the functional
equation

3∑
i=0

3Ci(−1)3−if(ix + y) = 0

in the sense of Th.M.Rassias on the punctured domain. Also, we
investigate the superstability of the functional equation.

1. Introduction

Throughout this paper, let X be a normed space and Y a Banach
space. For a given mapping f : X → Y , define a mapping E3f : X×X →
Y by

E3f(x, y) :=
3∑

i=0

3Ci(−1)3−if(ix + y)

for all x, y ∈ X, where 3Ci = 3!
i!(3−i)! . A mapping f : X → Y is called a

generalized polynomial function of degree 2 if f satisfies the functional
equation E3f(x, y) = 0. The functional equation E3f(x, y) = 0 is called
a generalized polynomial functional equation of degree 2. The function
f : R→ R defined by f(x) =

∑2
i=0 aix

i satisfies the functional equation
E3f = 0, where ai are real constants and R is the set of real numbers.

If we replace a given functional equation by a functional inequality,
when can one assert that the solutions of the inequality must be close
to the solutions of the given equation? If the answer is affirmative, we
would say that a given functional equation is stable.
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In 1941, D.H.Hyers [5] proved the stability of Cauchy equation f(x+
y) − f(x) − f(y) = 0 and in 1978, Th.M.Rassias [7] gave a significant
generalization of the Hyers’ result. Th.M.Rassias [8] during the 27th
International Symposium on Functional Equations, that took place in
Bielsko-Biala, Poland, in 1990, asked the question whether such a theo-
rem can also be proved for a more general setting. Z.Gadja [3] following
Th.M.Rassias’s approach [7] gave an affirmative solution to the question.
Recently, P.Găvruta [4] obtained a further generalization of Rassias’ the-
orem, the so-called generalized Hyers-Ulam-Rassias stability.

A stability problem for the quadratic functional equation f(x + y) +
f(x − y) − 2f(x) − 2f(y) = 0 was proved by F.Skof [9] for a function
f : X → Y . P.W. Cholewa [1] noticed that the theorem of Skof is
still true if the relevant domain X is replaced by an Abelian group.
S.Czerwik [2] proved the Hyers-Ulam-Rassias stability of the quadratic
functional equation.

In this paper, we prove the Hyers-Ulam-Rassias stability(if p ≥ 0)
and the superstability(if p < 0) of the functional equation E3f = 0 in
the sense of Th. M. Rassias.

2. Stability of the functional equation E3f = 0

Lemma 2.1. Suppose that the odd function f : X → Y satisfies

(2.1) E3f(x, y) = 0

for all x, y ∈ X \ {0} and

f(2x) = 2f(x)

for all x ∈ X. Then f is an additive function.

Proof. Since f is odd and f(2x) = 2f(x), the equality

f(x) + f(y)− f(x + y)

=
3E3f(x,−x + y) + E3f(x,−x− y) + E3f(y, 2x− y)

6
= 0

holds for all x, y ∈ X \ {0}. From the above equality and f(0) = 0, we
get the equality

f(x) + f(y)− f(x + y) = 0

for all x, y ∈ X.
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Lemma 2.2. Suppose that the even function f : X → Y satisfies (2.1)
for all x, y ∈ X \ {0} and

f(2x) = 4f(x)

for all x ∈ X. Then f is a quadratic function.

Proof. Since f is even and f(2x) = 4f(x), the equality

2f(x) + 2f(y)− f(x + y)− f(x− y)

=
3E3f(x,−x + y) + E3f(x,−x− y) + E3f(y, 2x− y)

6
= 0

holds for all x, y ∈ X \ {0}. From the above equality and f(0) = 0, we
get the equality

2f(x) + 2f(y)− f(x + y)− f(x− y) = 0

for all x, y ∈ X.

From Lemma 2.1 and Lemma 2.2, we get the following lemma.

Lemma 2.3. The function f : X → Y satisfies (2.1) for all x, y ∈
X \ {0} if and only if there exist a quadratic function Q : X → Y and
an additive function A : X → Y such that

f(x) = Q(x) + A(x) + f(0)

for all x ∈ X. The functions Q,A : X → Y are given by

Q(x) :=
f(x) + f(−x)

2
− f(0),

A(x) :=
f(x)− f(−x)

2
for all x ∈ X.

The following lemma is seen in [6].

Lemma 2.4. Let a be a positive real number and Φ : X \{0} → [0,∞)
a map. Suppose that the function f : X → Y satisfies the inequality

‖f(x)− f(2x)
a

‖ ≤ Φ(x)
a

and f(0) = 0.

(i) If
∑∞

l=0
1

al+1 Φ(2lx) < ∞ for all x ∈ X \{0}, then there exists a unique
function F : X → Y satisfying

‖f(x)− F (x)‖ ≤
∞∑

l=0

1
al+1

Φ(2lx)

for all x ∈ X\{0} and F is given by F (x) = limn→∞
f(2nx)

an for all x ∈ X.
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(ii) If
∑∞

l=0 alΦ( x
2l+1 ) < ∞ for all x ∈ X \{0}, then there exists a unique

function F : X → Y satisfying

‖f(x)− F (x)‖ ≤
∞∑

l=0

alΦ(
x

2l+1
) < ∞

for all x ∈ X \ {0} and F is given by F (x) = limn→∞ anf( x
2n ) for all

x ∈ X.

Theorem 2.5. Let ε > 0 and p < 1. If a function f : X → Y satisfies

(2.2) ‖E3f(x, y)‖ ≤ ε(‖x‖p + ‖y‖p)

for all x, y ∈ X \ {0}, then there exists a unique generalized polynomial
function F : X → Y of degree 2 with f(0) = F (0) such that

(2.3) ‖f(x)− F (x)‖ ≤ ( 2
|2− 2p| +

2
|4− 2p|

)
ε‖x‖p

for all x ∈ X \ {0}. In particular, F is represented by

F (x) = lim
n→∞

(f(2nx) + f(−2nx)
2 · 4n

+
f(2nx)− f(−2nx)

2n+1

)
+ f(0)

for all x ∈ X.

Proof. From (2.2), we get the inequalities

‖f(x)− f(−x)
2

− f(2x)− f(−2x)
4

‖

=
1
4
‖ − E3f(x,−x) + E3f(−x, x)‖ ≤ ε‖x‖p,(2.4)

‖f(x) + f(−x)
2

− f(0)− 1
4
(f(2x) + f(−2x)

2
− f(0)

)‖

=
1
8
‖E3f(x,−x) + E3f(−x, x)‖ ≤ ε

2
‖x‖p(2.5)

for all x ∈ X \ {0}. By Lemma 2.4, there exist functions A,Q : X → Y
defined by

A(x) := lim
n→∞

f(2nx)− f(−2nx)
2n+1

,

Q(x) = lim
n→∞

f(2nx) + f(−2nx)
2 · 4n

for all x ∈ X and the functions A,Q satisfy the inequalities

(2.6) ‖f(x)− f(−x)
2

−A(x)‖ ≤ 2ε

|2− 2p|‖x‖
p,
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(2.7) ‖f(x) + f(−x)
2

− f(0)−Q(x)‖ ≤ 2ε

|4− 2p|‖x‖
p

for all x ∈ X \ {0}. From (2.2) and p < 1, we obtain

E3A(x, y) = limn→∞
E3f(2nx,2ny)−E3f(−2nx,−2ny)

2n+1 = 0,

E3Q(x, y) = limn→∞
E3f(2nx,2ny)+E3f(−2nx,−2ny)

22n+1 = 0

for all x, y ∈ X \ {0}. Since A(2x) = 2A(x) and Q(2x) = 4Q(x), A is
an additive function and Q is a quadratic function by Lemma 2.1 and
Lemma 2.2. From (2.6), (2.7), and the inequality

‖f(x)−F (x)‖ ≤ ‖f(x)− f(−x)
2

−A(x)‖+‖f(x) + f(−x)
2

−f(0)−Q(x)‖
for all x ∈ X \ {0}, we get the inequality (2.3), where F (x) = Q(x) +
A(x) + f(0). Now, let F ′ be another generalized polynomial function of
degree 2 satisfying (2.3) with F ′(0) = f(0). Then there exist a quadratic
function Q′ : X → Y and an additive function A′ : X → Y such that
F ′(x) = Q′(x) + A′(x) + f(0) by Lemma 2.3. Since Q,Q′ : X → Y are
quadratic functions, we get

‖Q(x)−Q′(x)‖ =
1
4n
‖Q(2nx)−Q′(2nx)‖

≤ 1
4n
‖f(2nx)− F (2nx)‖+

1
4n
‖f(2nx)− F ′(2nx)‖

+
1
4n
‖A(2nx)−A′(2nx)‖

≤ 2np

4n

( 4
|2− 2p| +

4
|4− 2p|

)
ε‖x‖p +

1
2n
‖A(x)−A′(x)‖

for all x ∈ X \ {0} and n ∈ N. As n → ∞, we may conclude that
Q(x) = Q′(x) for all x ∈ X. Since Q = Q′, we get

‖F (x)− F ′(x)‖ =
1
2n
‖A(2nx)−A′(2nx)‖

≤ 1
2n
‖f(2nx)− F (2nx)‖+

1
2n
‖f(2nx)− F ′(2nx)‖

≤ 2np

2n

( 4
|2− 2p| +

4
|4− 2p|

)
ε‖x‖p

for all x ∈ X \ {0} and n ∈ N. As n → ∞, we may conclude that
F (x) = F ′(x) for all x ∈ X.

By the similar method in the proof of Theorem 2.5, we can prove the
following theorem.
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Theorem 2.6. Let p > 2 and ε > 0. If a function f : X → Y
satisfies (2.2) for all x, y ∈ X\{0}, then there exists a unique generalized
polynomial function F : X → Y of degree 2 with f(0) = F (0) such that

(2.8) ‖f(x)− F (x)‖ ≤ 2ε

2p − 4
‖x‖p

for all x ∈ X \ {0}. In particular, F is represented by

F (x) = lim
n→∞

(
(2n−1 + 22n−1)f(

x

2n
)

+ (−2n−1 + 22n−1)f(
−x

2n
)− 4nf(0)

)
+ f(0)

for all x ∈ X.

Proof. By (2.4), (2.5) and Lemma 2.4 ii), there exist functions A,Q :
X → Y defined by

A(x) := lim
n→∞ 2n−1(f(

x

2n
)− f(− x

2n
)),

Q(x) = lim
n→∞ 22n−1(f(

x

2n
) + f(− x

2n
)− 2f(0))

for all x ∈ X and the functions A,Q satisfy the inequalities (2.6)-(2.7)
for all x ∈ X \ {0}. From (2.2) and p > 2, we obtain E3A(x, y) =
0, E3Q(x, y) = 0 for all x, y ∈ X \ {0}. From (2.6) and (2.7), we have
the inequality

‖f(x) − Q(x)−A(x)− f(0)‖

≤ 1
2

n∑

i=1

‖(4n−1 + 2n−1)E3f(
x

2n
,− x

2n
)

+ (4n−1 − 2n−1)E3f(− x

2n
,

x

2n
)‖

+ 4n‖1
2
(
f(

x

2n
) + f(− x

2n
)
)− f(0)−Q(

x

2n
)‖

+ 2n‖1
2
(
f(

x

2n
)− f(− x

2n
)
)−A(

x

2n
)‖

≤
n∑

i=1

2 · 4n−1ε

2np
‖x‖p +

( 4n

2np

2ε

|4− 2p| +
2n

2np

2ε

|2− 2p|
)‖x‖p

for all x ∈ X \ {0} and n ∈ N. As n → ∞, we get the inequality (2.8),
where F (x) = Q(x) + A(x) + f(0). Now, let F ′ be another generalized
polynomial function of degree 2 satisfying (2.3) with F ′(0) = f(0). Then
there are a quadratic function Q′ : X → Y and an additive function
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A′ : X → Y such that F ′(x) = Q′(x)+A′(x)+f(0). Since A,A′ : X → Y
are additive functions, we get

‖A(x)−A′(x)‖ = 2n‖A(
x

2n
)−A′(

x

2n
)‖

≤ 2n
(‖f(

x

2n
)− F (

x

2n
)‖+ ‖f(

x

2n
)− F ′(

x

2n
)‖

+ ‖Q(
x

2n
)−Q′(

x

2n
)‖)

≤ 2n+2

2np|4− 2p|ε‖x‖
p +

1
2n
‖Q(x)−Q′(x)‖

for all x ∈ X \ {0} and n ∈ N. As n → ∞, we may conclude that
A(x) = A′(x) for all x, y ∈ X. Since A = A′, we get

‖F (x)− F ′(x)‖ = 4n‖Q(
x

2n
)−Q′(

x

2n
)‖

≤ 4n
(‖f(

x

2n
)− F (

x

2n
)‖+ ‖f(

x

2n
)− F ′(

x

2n
)‖)

≤ 4n+1

2np|4− 2p|ε‖x‖
p

for all x ∈ X \ {0} and n ∈ N. As n → ∞, we may conclude that
F (x) = F ′(x) for all x, y ∈ X.

Theorem 2.7. Let 1 < p < 2 and ε > 0. If a function f : X → Y
satisfies (2.2) for all x, y ∈ X\{0}, then there exists a unique generalized
polynomial function F : X → Y of degree 2 with f(0) = F (0) such that
(2.3) holds for all x ∈ X \ {0}. In particular, F is represented by

F (x) = lim
n→∞

(f(2nx)− f(−2nx)
2n+1

+ 22n−1(f(
x

2n
) + f(

−x

2n
))− 4nf(0)

)
+ f(0)

for all x ∈ X.

Proof. Let the function Q be as in the proof of Theorem 2.5 and
the function A as in the proof of Theorem 2.6. We easily show that
there exists a generalized polynomial function F : X → Y of degree
2 with f(0) = F (0) satisfying (2.3) for all x ∈ X \ {0}, where F =
Q+A+f(0). Now, let F ′ be another generalized polynomial function of
degree 2 satisfying (2.3) with F ′(0) = f(0). Then there are a quadratic
function Q′ : X → Y and an additive function A′ : X → Y such that
F ′(x) = Q′(x)+A′(x)+f(0). Since A,A′ : X → Y are additive functions,
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Since A,A′ : X → Y are additive functions, we get

‖A(x)−A′(x)‖ = 2n‖A(
x

2n
)−A′(

x

2n
)‖

≤ 2n
(‖f(

x

2n
)− F (

x

2n
)‖+ ‖f(

x

2n
)− F ′(

x

2n
)‖

+ ‖Q(
x

2n
)−Q′(

x

2n
)‖)

≤ 2n+2

2np

( 1
|2− 2p| +

1
|4− 2p|

)
ε‖x‖p +

1
2n
‖Q(x)−Q′(x)‖

for all x ∈ X \ {0} and n ∈ N. As n → ∞, we may conclude that
A(x) = A′(x) for all x, y ∈ X. Since A = A′, we get

‖F (x)− F ′(x)‖ = ‖Q(2nx)−Q′(2nx)
4n

‖

≤ 1
4n

(‖f(2nx)− F (2nx)‖+ ‖f(2nx)− F ′(2nx)‖)

≤ 2np

4n

( 4
|2− 2p| +

4
|4− 2p|

)
ε‖x‖p

for all x ∈ X \ {0} and n ∈ N. As n → ∞, we may conclude that
F (x) = F ′(x) for all x, y ∈ X.

3. Superstability of the functional equation E3f = 0

Theorem 3.1. Let ε > 0 and p < 0. If a function f : X → Y satisfies
(2.2) for all x, y ∈ X \ {0}, then f is a generalized polynomial function
of degree 2.

Proof. By Theorem 2.5, there exists a unique generalized polynomial
function F : X → Y of degree 2 with f(0) = F (0) such that the inequal-
ity (2.3) holds for all x ∈ X \ {0}. Hence the inequality

3‖f(x)− F (x)‖ ≤ ‖E3f((k + 1)x,−kx)− E3F ((k + 1)x,−kx)‖
+ ‖(f − F )((2k + 3)x)‖
+ 3‖(f − F )((k + 2)x)‖+ ‖(f − F )(−kx)‖
≤

((
(2k + 3)p + 3(k + 2)p + kp

)( 2
|2− 2p| +

2
|4− 2p|

)

+
(
(k + 1)p + kp

))
ε‖x‖p

holds for all x ∈ X \ {0} and k ∈ N. Taking as k → ∞, we conclude
f(x) = F (x) for all x ∈ X \ {0}.
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