• Title/Summary/Keyword: Generalized Derivation

Search Result 162, Processing Time 0.026 seconds

Derivation of Relationship between Cross-site Correlation among data and among Estimators of L-moments for Generalize Extreme value distribution (Generalized Extreme Value 분포 자료의 교차상관과 L-모멘트 추정값의 교차상관의 관계 유도)

  • Jeong, Dae-Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3B
    • /
    • pp.259-267
    • /
    • 2009
  • Generalized Extreme Value (GEV) distribution is recommended for flood frequency and extreme rainfall distribution in many country. L-moment method is the most common estimation procedure for the GEV distribution. In this study, the relationships between the cross-site correlations between extreme events and the cross-correlation of estimators of L-moment ratios (L-moment Coefficient of Variation (L-CV) and L-moment Coefficient of Skewness (L-CS)) for data generated from GEV distribution were derived by Monte Carlo simulation. Those relationships were fit to the simple power function. In this Monte Carlo simulation, GEV+ distribution were employed wherein unrealistic negative values were excluded. The simple power models provide accurate description of the relationships between cross-correlation of data and cross-correlation of L-moment ratios. Estimated parameters and accuracies of the power functions were reported for different GEV distribution parameters combinations. Moreover, this study provided a description about regional regression approach using Generalized Least Square (GLS) regression method which require the cross-site correlation among L-moment estimators. The relationships derived in this study allow regional GLS regression analyses of both L-CV and L-CS estimators that correctly incorporate the cross-correlation among GEV L-moment estimators.

Derivation of Probability Plot Correlation Coefficient Test Statistics and Regression Equation for the GEV Model based on L-moments (L-모멘트 법 기반의 GEV 모형을 위한 확률도시 상관계수 검정 통계량 유도 및 회귀식 산정)

  • Ahn, Hyunjun;Jeong, Changsam;Heo, Jun-Haeng
    • Journal of Korean Society of Disaster and Security
    • /
    • v.13 no.1
    • /
    • pp.1-11
    • /
    • 2020
  • One of the important problem in statistical hydrology is to estimate the appropriated probability distribution for a given sample data. For the problem, a goodness-of-fit test is conducted based on the similarity between estimated probability distribution and assumed theoretical probability distribution. Probability plot correlation coefficient test (PPCC) is one of the goodness-of-fit test method. PPCC has high rejection power and its application is simple. In this study, test statistics of PPCC were derived for generalized extreme value distribution (GEV) models based on L-moments and these statistics were suggested by the multiple and nonlinear regression equations for its usability. To review the rejection power of the newly proposed method in this study, Monte Carlo simulation was performed with other goodness-of-fit tests including the existing PPCC test. The results showed that PPCC-A test which is proposed in this study demonstrated better rejection power than other methods, including the existing PPCC test. It is expected that the new method will be helpful to estimate the appropriate probability distribution model.

Application of Slip-line Method to the Evaluation of Plastic Zone around a Circular Tunnel (원형터널 주변의 소성영역 평가를 위한 slip-line 해석법 활용)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.32 no.5
    • /
    • pp.312-326
    • /
    • 2022
  • The generalized Hoek-Brown (GHB) criterion, which is recognized as one of the standard failure conditions for rock mass, is specialized for rock engineering applications and covers a wide range of rock mass conditions. Accordingly, many research efforts have been devoted to the incorporation of this criterion into the stability analysis of rock structures. In this study, the slip-line analysis method, which is a kind of elastoplastic analysis method, is combined with the GHB failure criterion to derive analytical equations that can easily calculate the plastic radius and stress distribution in the vicinity of the circular tunnel. In the process of derivation of related formulas, it is assumed that the behavior of rock mass after failure is perfectly plastic and the in-situ stress condition is hydrostatic. In the formulation, it is revealed that the plastic radius can be calculated analytically using the two respective tangential friction angles corresponding to the stress conditions at tunnel wall and elastic-plastic boundary. It is also shown that the plastic radius and stress distribution calculated using the derived analytical equations coincide with the results of Lee & Pietruszczak's numerical method published in 2008. In the latter part of this paper, the influence of the quality of the rock mass on the size of the plastic zone, the stress distribution, and the change of the tangential friction angle was investigated using the derived analytical equations.

STABILITY OF HOMOMORPHISMS IN BANACH MODULES OVER A C*-ALGEBRA ASSOCIATED WITH A GENERALIZED JENSEN TYPE MAPPING AND APPLICATIONS

  • Lee, Jung Rye
    • Korean Journal of Mathematics
    • /
    • v.22 no.1
    • /
    • pp.91-121
    • /
    • 2014
  • Let X and Y be vector spaces. It is shown that a mapping $f:X{\rightarrow}Y$ satisfies the functional equation ${\ddag}$ $$2df(\frac{x_1+{\sum}_{j=2}^{2d}(-1)^jx_j}{2d})-2df(\frac{x_1+{\sum}_{j=2}^{2d}(-1)^{j+1}x_j}{2d})=2\sum_{j=2}^{2d}(-1)^jf(x_j)$$ if and only if the mapping $f:X{\rightarrow}Y$ is additive, and prove the Cauchy-Rassias stability of the functional equation (${\ddag}$) in Banach modules over a unital $C^*$-algebra, and in Poisson Banach modules over a unital Poisson $C^*$-algebra. Let $\mathcal{A}$ and $\mathcal{B}$ be unital $C^*$-algebras, Poisson $C^*$-algebras, Poisson $JC^*$-algebras or Lie $JC^*$-algebras. As an application, we show that every almost homomorphism $h:\mathcal{A}{\rightarrow}\mathcal{B}$ of $\mathcal{A}$ into $\mathcal{B}$ is a homomorphism when $h(d^nuy)=h(d^nu)h(y)$ or $h(d^nu{\circ}y)=h(d^nu){\circ}h(y)$ for all unitaries $u{\in}\mathcal{A}$, all $y{\in}\mathcal{A}$, and n = 0, 1, 2, ${\cdots}$. Moreover, we prove the Cauchy-Rassias stability of homomorphisms in $C^*$-algebras, Poisson $C^*$-algebras, Poisson $JC^*$-algebras or Lie $JC^*$-algebras, and of Lie $JC^*$-algebra derivations in Lie $JC^*$-algebras.

Derivation of Optimal Design Flood by L-Moments and LB-Moments ( I ) - On the method of L-Moments - (L-모멘트 및 LH-모멘트 기법에 의한 적정 설계홍수량의 유도( I ) - L-모멘트법을 중심으로 -)

  • 이순혁;박명근;맹승진;정연수;김동주;류경식
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.4
    • /
    • pp.45-57
    • /
    • 1998
  • This study was conducted to derive optimal design floods by Generalized Extreme Value (GEV) distribution for the annual maximum series at ten watersheds along Han, Nagdong, Geum, Yeongsan and Seomjin river systems. Adequacy for the analysis of flood data used in this study was established by the tests of Independence, Homogeneity, detection of Outliers. L-coefficient of variation, L-skewness and L-kurtosis were calculated by L-moment ratio respectively. Parameters were estimated by the Methods of Moments and L-Moments. Design floods obtained by Methods of Moments and L-Moments using different methods for plotting positions in GEV distribution were compared by the Relative Mean Errors(RME) and Relative Absolute Errors(RAE). The results were analyzed and summarized as follows. 1. Adequacy for the analysis of flood data was acknowledged by the tests of Independence, Homogeneity and detection of Outliers. 2. GEV distribution used in this study was found to be more suitable one than Pearson type 3 distribution by the goodness of fit test using Kolmogorov-Smirnov test and L-Moment ratios diagram in the applied watersheds. 3. Parameters for GEV distribution were estimated using Methods of Moments and L-Moments. 4. Design floods were calculated by Methods of Moments and L-Moments in GEV distribution. 5. It was found that design floods derived by the method of L-Moments using Weibull plotting position formula in GEV distribution are much closer to those of the observed data in comparison with those obtained by method of moments using different formulas for plotting positions from the viewpoint of Relative Mean Errors and Relative Absolute Errors.

  • PDF

ON A GENERALIZED TRIF'S MAPPING IN BANACH MODULES OVER A C*-ALGEBRA

  • Park, Chun-Gil;Rassias Themistocles M.
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.2
    • /
    • pp.323-356
    • /
    • 2006
  • Let X and Y be vector spaces. It is shown that a mapping $f\;:\;X{\rightarrow}Y$ satisfies the functional equation $$mn_{mn-2}C_{k-2}f(\frac {x_1+...+x_{mn}} {mn})$$ $(\ddagger)\;+mn_{mn-2}C_{k-1}\;\sum\limits_{i=1}^n\;f(\frac {x_{mi-m+1}+...+x_{mi}} {m}) =k\;{\sum\limits_{1{\leq}i_1<... if and only if the mapping $f : X{\rightarrow}Y$ is additive, and we prove the Cauchy-Rassias stability of the functional equation $(\ddagger)$ in Banach modules over a unital $C^*-algebra$. Let A and B be unital $C^*-algebra$ or Lie $JC^*-algebra$. As an application, we show that every almost homomorphism h : $A{\rightarrow}B$ of A into B is a homomorphism when $h(2^d{\mu}y) = h(2^d{\mu})h(y)\;or\;h(2^d{\mu}\;o\;y)=h(2^d{\mu})\;o\;h(y)$ for all unitaries ${\mu}{\in}A,\;all\;y{\in}A$, and d = 0,1,2,..., and that every almost linear almost multiplicative mapping $h:\;A{\rightarrow}B$ is a homomorphism when h(2x)=2h(x) for all $x{\in}A$. Moreover, we prove the Cauchy-Rassias stability of homomorphisms in $C^*-algebras$ or in Lie $JC^*-algebras$, and of Lie $JC^*-algebra$ derivations in Lie $JC^*-algebras$.

Analysis of High-Speed Pulse Propagation on Arbitrarily Interconnected Transmission Lines by an Efficient Node Discretization Technique (효율적인 노드분할법을 통한 임의 결선된 전송선로상의 고속 펄스 전송 해석)

  • 전상재;박의준
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.1
    • /
    • pp.37-46
    • /
    • 2003
  • The transient responses on arbitrarily interconnected digital transmission lines are analyzed by an efficient node discretization technique. Since the proposed node discretization technique offers an efficient means to discretize transmission lines, the transient waveform at any position on the arbitrarily interconnected lines is easily predicted. Dispersive microstrip multiconductor transmission lines arbitrarily connected are analized for generality. The derivation of frequency-dependent equivalent circuit elements of coupled transmission lines have been carried out by the spectral domain approach(SDA). The effects of variations of excited pulse width on the crosstalks of the high-speed microstrip coupled-lines are also investigated. It has been well known that the crosstalk spike level is monotonously increased when the coupling length and effective permittivity of substrate are increased. In this paper, it is found that the variations of crosstalk level are not further monotonous as shortening the exciting pulse width toward several picosecond. The results are verified by the generalized S-parameter technique.

Exact Dynamic Stiffness Matrix of Nonsymmetric Thin-walled Beams Subjected to Eccentrically Axial Forces (편심축하중을 받는 비대칭 박벽보의 엄밀한 동적강도행렬)

  • Kim, Moon Young;Yun, Hee Taek
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.6
    • /
    • pp.703-713
    • /
    • 2001
  • Derivation procedures of exact dynamic stiffness matrices of thin-walled straight beams subjected to eccentrically axial forces are rigorously presented for the spatial free vibration analysis. An exact dynamic stiffness matrix is established from governing equations for a uniform beam element with nonsymmetric thin-walled cross section. First this numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. Thus, the displacement functions of displacement parameters are exactly derived and finally exact stiffness matrices are determined using element force-displacement relationships. The natural frequencies of nonsymmetric thin-walled straight beams are evaluated and compared with analytical solutions or results by thin-walled beam element using the cubic Hermitian polynomials and ABAQU's shell elements in order to demonstrate the validity of this study.

  • PDF

Derivation of Exact Dynamic Stiffness Matrix of a Beam-Column Element on Elastic Foundation (균일하게 탄성지지된 보-기둥요소의 엄밀한 동적강성행렬 유도)

  • 김문영;윤희택;곽태영
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.463-469
    • /
    • 2002
  • The governing equation and force-displacement rotations of a beam-column element on elastic foundation we derived based on variational approach of total potential energy. An exact static and dynamic 4×4 element stiffness matrix of the beam-column element is established via a generalized lineal-eigenvalue problem by introducing 4 displacement parameters and a system of linear algebraic equations with complex matrices. The structure stiffness matrix is established by the conventional direct stiffness method. In addition the F. E. procedure is presented by using Hermitian polynomials as shape function and evaluating the corresponding elastic and geometric stiffness and the mass matrix. In order to verify the efficiency and accuracy of the beam-column element using exact dynamic stiffness matrix, buckling loads and natural frequencies are calculated for the continuous beam structures and the results are compared with F E. solutions.

Determination of Minimum Vertex Interval using Shoreline Characteristics (해안선 길이 특성을 이용한 일관된 최소 점간거리 결정 방안)

  • WOO, Hee-Sook;KIM, Byung-Guk;KWON, Kwang-Seok
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.4
    • /
    • pp.169-180
    • /
    • 2019
  • Shorelines should be extracted with consistency because they are the reference for determining the shape of a country. Even in the same area, inconsistent minimum vertex intervals cause inconsistencies in the coastline length, making it difficult to acquire reliable primary data for national policy decisions. As the shoreline length cannot be calculated consistently for shorelines produced by determining the arbitrary distance between points below 1m, a methodology to calculate consistent shoreline length using the minimum vertex interval is proposed herein. To compare our results with the shoreline length published by KHOA(Korea Hydrographic and Oceanographic Agency) and analyze the change in shoreline length according to the minimum vertex interval, target sites was selected and the grid overlap of the shoreline was determined. Based on the comparison results, minimum grid sizes and the minimum vertex interval can be determined by deriving a polynomial function that estimates minimum grid sizes for determining consistent shoreline lengths. By comparing public shoreline lengths with generalized shoreline lengths using various grid sizes and by analyzing the characteristics of the shoreline according to vertex intervals, the minimum vertex intervals required to achieve consistent shoreline lengths could be estimated. We suggest that the minimum vertex interval methodology by quantitative evaluation of the determined grid size may be useful in calculating consistent shoreline lengths. The proposed method by minimum vertex interval determination can help derive consistent shoreline lengths and increase the reliability of national shorelines.