Browse > Article
http://dx.doi.org/10.11568/kjm.2014.22.1.91

STABILITY OF HOMOMORPHISMS IN BANACH MODULES OVER A C*-ALGEBRA ASSOCIATED WITH A GENERALIZED JENSEN TYPE MAPPING AND APPLICATIONS  

Lee, Jung Rye (Department of Mathematics Daejin University)
Publication Information
Korean Journal of Mathematics / v.22, no.1, 2014 , pp. 91-121 More about this Journal
Abstract
Let X and Y be vector spaces. It is shown that a mapping $f:X{\rightarrow}Y$ satisfies the functional equation ${\ddag}$ $$2df(\frac{x_1+{\sum}_{j=2}^{2d}(-1)^jx_j}{2d})-2df(\frac{x_1+{\sum}_{j=2}^{2d}(-1)^{j+1}x_j}{2d})=2\sum_{j=2}^{2d}(-1)^jf(x_j)$$ if and only if the mapping $f:X{\rightarrow}Y$ is additive, and prove the Cauchy-Rassias stability of the functional equation (${\ddag}$) in Banach modules over a unital $C^*$-algebra, and in Poisson Banach modules over a unital Poisson $C^*$-algebra. Let $\mathcal{A}$ and $\mathcal{B}$ be unital $C^*$-algebras, Poisson $C^*$-algebras, Poisson $JC^*$-algebras or Lie $JC^*$-algebras. As an application, we show that every almost homomorphism $h:\mathcal{A}{\rightarrow}\mathcal{B}$ of $\mathcal{A}$ into $\mathcal{B}$ is a homomorphism when $h(d^nuy)=h(d^nu)h(y)$ or $h(d^nu{\circ}y)=h(d^nu){\circ}h(y)$ for all unitaries $u{\in}\mathcal{A}$, all $y{\in}\mathcal{A}$, and n = 0, 1, 2, ${\cdots}$. Moreover, we prove the Cauchy-Rassias stability of homomorphisms in $C^*$-algebras, Poisson $C^*$-algebras, Poisson $JC^*$-algebras or Lie $JC^*$-algebras, and of Lie $JC^*$-algebra derivations in Lie $JC^*$-algebras.
Keywords
Cauchy-Rassias stability; $C^*$-algebra homomorphism; Poisson $C^*$-algebra homomorphism; Poisson Banach module over Poisson $C^*$-algebra; Poisson $JC^*$-algebra homomorphism; Lie $JC^*$-algebra homomorphism; Lie $JC^*$-algebra derivation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Z. Gajda, On stability of additive mappings, Internat. J. Math. and Math. Sci. 14 (1991), 431-434.   DOI   ScienceOn
2 P. Gavruta A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.   DOI   ScienceOn
3 D.H. Hyers On the stability of the linear functional equation, Pro. Nat'l. Acad. Sci. U.S.A. 27 (1941), 222-224.   DOI
4 D.H. Hyers and Th.M. Rassias Approximate homomorphisms, Aeq. Math. 44 (1992). 125-153.   DOI   ScienceOn
5 K. Jun and Y. Lee A generalization of the Hyers-Ulam-Rassias stability of Jensen's equation, J. Math. Anal. Appl. 238 (1999), 305-315.   DOI   ScienceOn
6 R.V. Kadison and G. Pedersen Means and convex combinations of unitary operators, Math. Scand. 57 (1985), 249-266.   DOI
7 R.V. Kadison and J.R. Ringrose Fundamentals of the Theory of Operator Algebras, Elementary Theory, Academic Press New York, 1983.
8 S. Oh, C. Park and Y. Shin Quantum n-space and Poisson n-space, Comm. Algebra 30 (2002), 4197-4209.   DOI   ScienceOn
9 S. Oh, C. Park and Y. Shin A Poincare-Birkhoff-Witt theorem for Poisson enveloping algebras, Comm. Algebra 30 (2002), 4867-4887.   DOI   ScienceOn
10 C. Park On the stability of the linear mapping in Banach modules, J. Math. Anal. Appl. 275 (2002), 711-720.   DOI   ScienceOn
11 C. Park and W. Park On the Jensen's equation in Banach modules, Taiwanese J. Math. 6 (2002), 523-531.   DOI
12 J.M. Rassias On approximation of approximately linear mappings by linear mappings, J. Funct. Anal. 46 (1982), 126-130.   DOI
13 Th.M. Rassias On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.   DOI   ScienceOn
14 Th.M. Rassias Problem 16; 2 Report of the 27th International Symp. on Functional Equations, Aeq. Math. 39 (1990), 292-293; 309.
15 Th.M. Rassias On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), 23-130.   DOI   ScienceOn
16 Th.M. Rassias The problem of S.M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246 (2000), 352-378.   DOI   ScienceOn
17 Th.M. Rassias On the stability of functional equations in Banach spaces, J.Math. Anal. Appl. 251 (2000), 264-284.   DOI   ScienceOn
18 Th.M. Rassias and P. Semrl On the behavior of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc. 114 (1992), 989-993.   DOI   ScienceOn
19 Th.M. Rassias and P. Semrl On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl. 173 (1993), 325-338.   DOI   ScienceOn
20 T. Trif On the stability of a functional equation deriving from an inequality of Popoviciu for convex functions, J. Math. Anal. Appl. 272 (2002), 604-616.   DOI   ScienceOn
21 S.M. Ulam Problems in Modern Mathematics, Wiley New York, 1960.
22 H. Upmeier Jordan Algebras in Analysis, Operator Theory, and Quantum Mechanics, Regional Conference Series in Mathematics No. 67 , Amer. Math. Soc., Providence, 1987.
23 K.R. Goodearl and E.S. Letzter Quantum n-space as a quotient of classical n-space, Trans. Amer. Math. Soc. 352 (2000), 5855-5876.   DOI   ScienceOn
24 P. Xu Noncommutative Poisson algebras, Amer. J. Math. 116 (1994), 101-125.   DOI   ScienceOn
25 C. Park Modified Trif 's functional equations in Banach modules over a $C^*$-algebra and approximate algebra homomorphisms, J. Math. Anal. Appl. 278 (2003), 93-108.   DOI   ScienceOn