효율적인 노드분할법을 통한 임의 결선된 전송선로상의 고속 펄스 전송 해석

Analysis of High-Speed Pulse Propagation on Arbitrarily Interconnected Transmission Lines by an Efficient Node Discretization Technique

  • 전상재 (금오공과대학교 전자공학부) ;
  • 박의준 (금오공과대학교 전자공학부)
  • 발행 : 2003.01.01

초록

임의로 결선된 디지털 전송선로의 과도응답을 효율적인 노드분할 기법을 사용하여 분석하였다. 제시한 노드분할 기법은 전송선로를 분할하여 해석할 수 있도록 하므로서 연결선의 임의 위치에서의 과도파형을 쉽게 예측할 수 있다. 일반성을 보이기 위해 임의로 연결된 분산특성을 갖는 마이크로스트립 다도체 전송선로들을 예로 들어 분석하였다. 결합선로의 주파수의존성 등가 회로정수들은 스펙트럼 영역 기법(SDA)을 사용하여 도출하였다. 고속 마이크로스트립 결합선로 상에 인가되는 펄스의 펄스폭 변화가 누화에 미치는 영향도 동시에 검토하였다. 선로의 길이와 기판 유전율이 증가하면 누화 피크값이 단조롭게 증가한다는 기존의 결과와는 달리 펄스폭이 수 ps에 이르면 오히려 감소하는 특성을 볼 수 있었다. 제시한 노드분할 기법을 사용한 결과를 일반화된 S-행렬 기법을 사용한 결과와 비교하므로서 타당성을 보였다.

The transient responses on arbitrarily interconnected digital transmission lines are analyzed by an efficient node discretization technique. Since the proposed node discretization technique offers an efficient means to discretize transmission lines, the transient waveform at any position on the arbitrarily interconnected lines is easily predicted. Dispersive microstrip multiconductor transmission lines arbitrarily connected are analized for generality. The derivation of frequency-dependent equivalent circuit elements of coupled transmission lines have been carried out by the spectral domain approach(SDA). The effects of variations of excited pulse width on the crosstalks of the high-speed microstrip coupled-lines are also investigated. It has been well known that the crosstalk spike level is monotonously increased when the coupling length and effective permittivity of substrate are increased. In this paper, it is found that the variations of crosstalk level are not further monotonous as shortening the exciting pulse width toward several picosecond. The results are verified by the generalized S-parameter technique.

키워드

참고문헌

  1. A.R.Djordjevic, T.K.Sarkar and S.M.Rao, 'Analysis of Finite Conductivity Cylindrical Conductors Excited by Axially-Independent TM Electromagnetic Field,' IEEE Trans. Microwave Theory Tech. vol. MTT-33, no. 10, pp. 960-966, Oct. 1985 https://doi.org/10.1109/TMTT.1985.1133156
  2. O.A.Palusinski and A.Lee, 'Analysis of Transients in Nonuniform and Uniform Multiconductor Lines,' IEEE Trans. Microwave Theory Tech., vol. MTT-37, no. 1, pp. 127-138, Jan. 1989
  3. A.R.Djordjevic and T.K.Sarkar, 'Analysis of Time Response of Lossy Multiconductor Transmission Line Networks,' IEEE Trans. Microwave Theory Tech., vol. MTT-35, no. 10, pp. 898-908, Oct. 1987 https://doi.org/10.1109/TMTT.1987.1133776
  4. J.R.Griffith and M.S.Nakhla, 'Time-Damain Analysis Lossy Coupled Transmission Lines,' IEEE Trans. Microwave Theory Tech., vol. MTT-38, no. 10, pp. 1480-1487, Oct. 1990 https://doi.org/10.1109/22.58689
  5. A.R.Djordjevic, T.K.Sarkar and R.F.Harrington, 'Analysis of Lossy Transmission Lines with Arbitrary Nonlinear Terminal Networks,' IEEE Trans. Microwave Theory Tech., vol. MTT-34, no. 6, pp. 660-666, Jun. 1986 https://doi.org/10.1109/TMTT.1986.1133414
  6. C.R.Paul, Analysis of Multiconductor Transmission Lines, John Wiley & Sons, 1994
  7. A.Gopinath and Chandra Gupta, 'Capacitance parameters of Discontinuities in Microstrip lines,' IEEE Trans. Microwave Theory Tech., vol. MTT-26, no. 10, pp. 831-835, Oct. 1978
  8. A.F. Thomson and A. Gopinath, 'Calculation of Microstrip Discontinuity Inductances,' IEEE Trans. Microwave Theory Tech., vol. MTT-23, no. 8, pp. 648-655, Aug. 1975 https://doi.org/10.1109/TMTT.1975.1128643
  9. E. J. Denlinger, 'A frequency Dependent Solution for Microstrip Transmission Lines,' IEEE Trans. Microwave Theory Tech., vol. MTT-19, pp. 30-39, Jan. 1971 https://doi.org/10.1109/TMTT.1971.1127442
  10. James P. K. Gilb and Constantine A, Balanis, 'Asymmetric, Multi-Conductor Low-Coupling Structures for High-Speed, High-Density Digital Interconnects' IEEE Trans. Microwave Theory Tech., vol. 39, No. 12, December 1991 https://doi.org/10.1109/22.106552
  11. M. A. Mehalic and R. Mittra, 'Investigation of Tapered Multiple Microstrip Lines for VLSI Circuits,' IEEE Trans. Microwave Theory Tech., vol. MTT-38, No. 11, pp. 1559-1567, Nov. 1990 https://doi.org/10.1109/22.60000
  12. M. Kirchning and R.H. Jansen, 'Accurate Wide-Range Design Equations for the Frequency-Dependent Characteristic of Parallel Coupled Microstrip Lines,' IEEE Trans. Microwave Theory Tech., vol. MTT-32, pp. 83-90, Jan. 1984 https://doi.org/10.1109/TMTT.1984.1132616
  13. James P. Gilb and Costantine A. Balanis, 'Pulse Distortion on Multilayer Coupled Microstrip Lines,' IEEE Trans. Microwave Theory Tech., vol. 37, No. 10, pp. 1620-1628, Oct. 1989 https://doi.org/10.1109/22.41010
  14. Tatsuo Itoh, Numerical Techniques for Microwave and Milimeter-Wave Passive Structures, pp. 334-380, John Wiley and Sons, 1989
  15. K.C.Gupta, I.Bahl, R.Garg and P.Bhartia, Microstrip Lines and Slotlines. Artech House, 1996
  16. P.Pramanick and R.R.Mansour, 'Dispersion Characteristics of Square Pulse with Finite Rise Time in Single, Tapered, and Coupled Microstrip Lines,' IEEE Trans. Microwave Theory Tech., vol. 39, NO. 12, pp. 2117-2122, Dec. 1991 https://doi.org/10.1109/22.106553
  17. T. T. Ha, Solid-State Microwave Amplifier Design, John Wiley & Sons, 1981