DOI QR코드

DOI QR Code

STABILITY OF HOMOMORPHISMS IN BANACH MODULES OVER A C*-ALGEBRA ASSOCIATED WITH A GENERALIZED JENSEN TYPE MAPPING AND APPLICATIONS

  • Received : 2014.02.28
  • Accepted : 2014.03.13
  • Published : 2014.03.30

Abstract

Let X and Y be vector spaces. It is shown that a mapping $f:X{\rightarrow}Y$ satisfies the functional equation ${\ddag}$ $$2df(\frac{x_1+{\sum}_{j=2}^{2d}(-1)^jx_j}{2d})-2df(\frac{x_1+{\sum}_{j=2}^{2d}(-1)^{j+1}x_j}{2d})=2\sum_{j=2}^{2d}(-1)^jf(x_j)$$ if and only if the mapping $f:X{\rightarrow}Y$ is additive, and prove the Cauchy-Rassias stability of the functional equation (${\ddag}$) in Banach modules over a unital $C^*$-algebra, and in Poisson Banach modules over a unital Poisson $C^*$-algebra. Let $\mathcal{A}$ and $\mathcal{B}$ be unital $C^*$-algebras, Poisson $C^*$-algebras, Poisson $JC^*$-algebras or Lie $JC^*$-algebras. As an application, we show that every almost homomorphism $h:\mathcal{A}{\rightarrow}\mathcal{B}$ of $\mathcal{A}$ into $\mathcal{B}$ is a homomorphism when $h(d^nuy)=h(d^nu)h(y)$ or $h(d^nu{\circ}y)=h(d^nu){\circ}h(y)$ for all unitaries $u{\in}\mathcal{A}$, all $y{\in}\mathcal{A}$, and n = 0, 1, 2, ${\cdots}$. Moreover, we prove the Cauchy-Rassias stability of homomorphisms in $C^*$-algebras, Poisson $C^*$-algebras, Poisson $JC^*$-algebras or Lie $JC^*$-algebras, and of Lie $JC^*$-algebra derivations in Lie $JC^*$-algebras.

Keywords

References

  1. Z. Gajda, On stability of additive mappings, Internat. J. Math. and Math. Sci. 14 (1991), 431-434. https://doi.org/10.1155/S016117129100056X
  2. P. Gavruta A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436. https://doi.org/10.1006/jmaa.1994.1211
  3. K.R. Goodearl and E.S. Letzter Quantum n-space as a quotient of classical n-space, Trans. Amer. Math. Soc. 352 (2000), 5855-5876. https://doi.org/10.1090/S0002-9947-00-02639-8
  4. D.H. Hyers On the stability of the linear functional equation, Pro. Nat'l. Acad. Sci. U.S.A. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
  5. D.H. Hyers and Th.M. Rassias Approximate homomorphisms, Aeq. Math. 44 (1992). 125-153. https://doi.org/10.1007/BF01830975
  6. K. Jun and Y. Lee A generalization of the Hyers-Ulam-Rassias stability of Jensen's equation, J. Math. Anal. Appl. 238 (1999), 305-315. https://doi.org/10.1006/jmaa.1999.6546
  7. R.V. Kadison and G. Pedersen Means and convex combinations of unitary operators, Math. Scand. 57 (1985), 249-266. https://doi.org/10.7146/math.scand.a-12116
  8. R.V. Kadison and J.R. Ringrose Fundamentals of the Theory of Operator Algebras, Elementary Theory, Academic Press New York, 1983.
  9. S. Oh, C. Park and Y. Shin Quantum n-space and Poisson n-space, Comm. Algebra 30 (2002), 4197-4209. https://doi.org/10.1081/AGB-120013313
  10. S. Oh, C. Park and Y. Shin A Poincare-Birkhoff-Witt theorem for Poisson enveloping algebras, Comm. Algebra 30 (2002), 4867-4887. https://doi.org/10.1081/AGB-120014673
  11. C. Park On the stability of the linear mapping in Banach modules, J. Math. Anal. Appl. 275 (2002), 711-720. https://doi.org/10.1016/S0022-247X(02)00386-4
  12. C. Park Modified Trif 's functional equations in Banach modules over a $C^*$-algebra and approximate algebra homomorphisms, J. Math. Anal. Appl. 278 (2003), 93-108. https://doi.org/10.1016/S0022-247X(02)00573-5
  13. C. Park and W. Park On the Jensen's equation in Banach modules, Taiwanese J. Math. 6 (2002), 523-531. https://doi.org/10.11650/twjm/1500407476
  14. J.M. Rassias On approximation of approximately linear mappings by linear mappings, J. Funct. Anal. 46 (1982), 126-130. https://doi.org/10.1016/0022-1236(82)90048-9
  15. Th.M. Rassias On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
  16. Th.M. Rassias Problem 16; 2 Report of the 27th International Symp. on Functional Equations, Aeq. Math. 39 (1990), 292-293; 309.
  17. Th.M. Rassias On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), 23-130. https://doi.org/10.1023/A:1006499223572
  18. Th.M. Rassias The problem of S.M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246 (2000), 352-378. https://doi.org/10.1006/jmaa.2000.6788
  19. Th.M. Rassias On the stability of functional equations in Banach spaces, J.Math. Anal. Appl. 251 (2000), 264-284. https://doi.org/10.1006/jmaa.2000.7046
  20. Th.M. Rassias and P. Semrl On the behavior of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc. 114 (1992), 989-993. https://doi.org/10.1090/S0002-9939-1992-1059634-1
  21. Th.M. Rassias and P. Semrl On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl. 173 (1993), 325-338. https://doi.org/10.1006/jmaa.1993.1070
  22. T. Trif On the stability of a functional equation deriving from an inequality of Popoviciu for convex functions, J. Math. Anal. Appl. 272 (2002), 604-616. https://doi.org/10.1016/S0022-247X(02)00181-6
  23. S.M. Ulam Problems in Modern Mathematics, Wiley New York, 1960.
  24. H. Upmeier Jordan Algebras in Analysis, Operator Theory, and Quantum Mechanics, Regional Conference Series in Mathematics No. 67 , Amer. Math. Soc., Providence, 1987.
  25. P. Xu Noncommutative Poisson algebras, Amer. J. Math. 116 (1994), 101-125. https://doi.org/10.2307/2374983