• 제목/요약/키워드: Gaussian 분포

검색결과 543건 처리시간 0.019초

INVERSE GAUSSIAN분포의 모수비에 대한 무정보적 사전분포에 대한 연구 (Noninformative Priors for the Ratio of Parameters in Inverse Gaussian Distribution)

  • 강상길;김달호;이우동
    • 응용통계연구
    • /
    • 제17권1호
    • /
    • pp.49-60
    • /
    • 2004
  • 이 논문의 목적은 역 가우스 분포의 모수비가 관심의 대상일 때, 그 모수비에 대한 무정보적 사전분포를 구하는데 있다. 특별히, 모수비에 대한 확률대응사전분포와 기준 사전분포를 제안하였다. 먼저, 관심의 대상이 되는 모수에 대해 모수 직교화 변환을 구하고, 모수 직교화 변환을 이용하여 확률대응사전분포와 기준사전분포를 구하였다. 특히 확률대응사전분포의 일치차수는 1차임을 보였으며 2차 확률대응사전분포는 존재하지 않음을 보였다. 또한 제안된 사전분포에 의해 유도된 사후분포는 적절 분포임을 증명하였다. 모의 실험을 통하여 확률대응사전분포와 기준사전분포를 비교했으며, 실제자료를 이용하여 분석하는 예를 보였다.

ex-Gaussian 모형을 활용한 인지적 과제의 반응시간 분포 분석 (The ex-Gaussian analysis of reaction time distributions for cognitive experiments)

  • 박형범;현주석
    • 감성과학
    • /
    • 제17권2호
    • /
    • pp.63-76
    • /
    • 2014
  • 대부분의 인지적 과제에서 관찰되는 반응시간 자료의 분포는 정적으로 편포되어 나타남에도 불구하고, 반응시간을 종속측정치로 하는 대다수의 연구들은 표본 평균에 근거한 집중경향치 분석에 의존한다. 본 연구에서는 반응시간 자료의 분포특성에 분석의 초점을 맞추어 실험적 처치의 효과를 구체적으로 추론하는 방법을 소개하였다. 평균 반응시간의 변화는 그 분포상 가우시안 및 지수 분포가 혼합된 형태로 나타난다고 가정할 수 있으며, 최대우도 추정법에 근거한 ex-Gaussian 모형 검증을 통해 반응시간 분포 특성을 수치화된 파라미터로 산출하고 확률밀도함수를 구현할 수 있다. 분석 사례를 위해 두 가지 고전적 시각탐색과제에서 얻어진 반응시간 자료를 사용하였으며, ex-Gaussian 함수를 통해 탐색배열의 항목개수의 증가가 초래하는 평균 반응시간의 지연효과에 대한 해석을 시도하였다. 수리적 모형을 통한 반응시간 분포 분석은 고전적 집중경향치 분석의 한계를 넘어 반응시간을 활용한 다양한 이론 및 개인차 연구에서 활용될 수 있을 것으로 기대된다.

이변량 Gaussian 분포함수를 적용한 CFRP 적층 평판의 보강섬유 물성저하 규명 (Determination of Degraded Fiber Properties of Laminated CFRP Flat Plates Using the Bivariate Gaussian Distribution Function)

  • 김규동;이상열
    • Composites Research
    • /
    • 제29권5호
    • /
    • pp.299-305
    • /
    • 2016
  • 본 연구는 이변량 Gaussian 분포함수를 적용하여 CFRP 적층판의 섬유물성 변화를 추정하는 방법을 제안하였다. 섬유의 손상 분포를 규명하기 위하여 수정된 이변량 Gaussian 분포함수를 적용하여 5개의 미지 변수가 고려되었다. 조합된 컴퓨터 기법을 적용하여 역문제를 해결하기 위하여 본 연구에서는 몇 개의 고유진동수와 모드 정보를 입력데이터로 활용하였다. 수치해석 예제는 제안된 기법이 적층배열 변화에 따른 CFRP 판의 섬유 손상 분포 및 위치를 규명할 수 있는 적합하고 실용적은 방법임을 보여준다.

역가우스분포에 대한 쿨백-라이블러 정보 기반 적합도 검정 (Kullback-Leibler Information-Based Tests of Fit for Inverse Gaussian Distribution)

  • 최병진
    • 응용통계연구
    • /
    • 제24권6호
    • /
    • pp.1271-1284
    • /
    • 2011
  • 본 논문에서는 위치와 척도모수가 모두 알려지지 않은 역가우스분포에 대한 적합도 검정으로 기존에 개발된 엔트로피 기반 검정을 확장한 쿨백-라이블러 정보 기반 적합도 검정을 소개한다. 역가우스분포에 대한 단순 또는 복합 영가설을 검정하기 위한 4가지 형태의 검정통계량을 제시하고 검정통계량의 계산에 사용할 표본크기에 따른 윈도크기와 기각값을 모의실험을 통해 결정하여 표의 형태로 제공한다. 검정력 분석을 위해 수행한 모의실험의 결과에서 위치와 척도모수가 모두 알려진 역가우스분포에 대한 쿨백-라이블러 정보 기반 적합도 검정은 모든 대립분포와 표본크기에서 EDF 검정들보다 좋은 검정력을 가지는 것으로 나타난다. 위치모수 또는 척도모수만 알려진 역가우스분포에 대한 쿨백-라이블러 정보 기반 적합도 검정은 모든 대립분포에 대해서 표본크기가 커짐에 따라 검정력이 증가하는 경향을 보인다. 위치와 척도모수가 모두 알려지지 않은 역가우스분포에 대한 쿨백-라이블러 정보 기반 적합도 검정은 대체적으로 엔트로피 기반 검정과 비슷한 수준의 검정력을 보이는 것으로 나타나고 이 결과를 통해서 두 검정은 동일함을 확인할 수 있다.

역가우스분포에 대한 적합도 평가를 위한 그래프 방법 (A Graphical Method to Assess Goodness-of-Fit for Inverse Gaussian Distribution)

  • 최병진
    • 응용통계연구
    • /
    • 제26권1호
    • /
    • pp.37-47
    • /
    • 2013
  • Q-Q 플롯은 자료에 대한 분포적 가정을 평가하기 위해서 사용되는 편리하고 효과적인 그래프 방법이다. Q-Q 플롯은 자료의 분포와 이론적 분포를 비교하기 위한 확률플롯으로 자료에서의 분위수와 이에 대응하는 이론적 분위수를 각각 수직축과 수평축으로 해서 그린 산점도의 형태를 취한다. 본 논문에서는 확률변수 X가 위치모수 ${\mu}$와 척도수 ${\lambda}$를 가지는 역가우스분포를 따르면, 변환된 확률변수 $Y={\mid}\sqrt{\lambda}(X-{\mu})/{\mu}\sqrt{X}{\mid}$는 평균이 0이고 분산이 1인 표준반접정규분포를 하게 되는 분포적 결과를 활용하여 역가우스분포 Q-Q 플롯의 구축방법을 소개한다. 역가우스분포와 다른 분포를 따르는 자료를 대상으로 그린 Q-Q 플롯에서 나타나는 점들의 형태를 알아보고자 모의실험을 수행하고 그 결과를 제시한다. 실제 자료에 대한 사례분석을 통해 제안한 Q-Q 플롯의 유용성을 보인다.

역가우스분포에 대한 변형된 엔트로피 기반 적합도 검정 (A Modi ed Entropy-Based Goodness-of-Fit Tes for Inverse Gaussian Distribution)

  • 최병진
    • 응용통계연구
    • /
    • 제24권2호
    • /
    • pp.383-391
    • /
    • 2011
  • 이 논문에서는 역가우스분포의 적합을 위한 변형된 엔트로피 기반 검정을 제시한다. 이 검정은 자료생성분포와 역가우스분포의 엔트로피 차이에 기초를 두고 있으며 검정통계량은 엔트로피 차이의 추정량을 사용한다. 엔트로피 차이의 추정량은 자료생성분포에 대한 엔트로피 추정량으로 Vasicek의 표본엔트로피와 역가우스분포에 대한 엔트로피 추정량로 균일최소분산불편추정량을 사용하여 얻는다. 모의실험을 통해 얻은 표본크기와 윈도크기에 따른 검정통계량의 기각값들을 표의 형태로 제공한다. 제안한 검정의 검정력 알아보기 위해 여러 대립분포와 표본크기에 대해서 모의실험을 수행하고 기존의 엔트로피 기반 검정과 비교한다.

Sequential Gaussian Simulation(SGS)에 의한 질산성질소 오염 분포 영상화

  • 배광옥;이강근;정형재
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 총회 및 춘계학술발표회
    • /
    • pp.82-85
    • /
    • 2003
  • 강원도 춘천시 신북읍 유포리 연구지역의 지하수의 NO$_3$-N 2차원 공간 분포를 정의하기 위하여 지구통계학적 해석 방법인 sequential Gaussian simulation(SGS)을 이용하였다. 원자료의 공간적 clustering을 제거하기 위하여 cell declustering을 수행한 후 normal score 변환을 거친 후 variogram 분석과 모델링을 수행하였다. Exponential, gaussian, spherical variogram model에 대한 각각의 nugget, range, sill을 정의하여 SGS에 이용하였다. SGS에 의해 도출된 결과들은 모두 동일한 결과를 나타낸다. 또한 관측 자료의 분포와 주 오염원의 분포와 상응하는 모델링 결과를 나타내는 것으로 보아 SGS를 이용한 농촌지역 지하수내 NO$_3$-N의 공간적 오염 분포 영상화가 매우 유용하게 활용될 수 있을 것으로 판단된다.

  • PDF

도핑분포함수에 따른 비대칭 MOSFET의 문턱전압이하 스윙 분석 (Analysis of Subthreshold Swing for Doping Distribution Function of Asymmetric Double Gate MOSFET)

  • 정학기
    • 한국정보통신학회논문지
    • /
    • 제18권5호
    • /
    • pp.1143-1148
    • /
    • 2014
  • 본 연구에서는 비대칭 이중게이트 MOSFET의 채널 내 도핑분포함수의 변화에 따른 문턱전압이하 스윙의 변화를 분석하였다. 이중게이트 MOSFET의 특성을 결정하는 가장 기본적인 요소는 채널의 크기 즉, 채널길이, 채널두께 등과 채널의 도핑분포함수이다. 도핑분포는 채널도핑 시 사용하는 이온주입법에 의하여 결정되며 일반적으로 가우스분포함수에 준한다고 알려져 있다. 포아송방정식을 이용하여 전하분포를 구하기 위하여 가우스분포함수을 이용하였다. 가우스분포함수는 반드시 상하 대칭이 아니므로 채널길이 및 채널두께, 그리고 비대칭 이중게이트 MOSFET의 상하단 게이트 전압 변화 등에 따라 문턱전압이하 스윙 값은 크게 변화할 것이다. 이에 본 연구에서는 가우스분포함수의 파라미터인 이온주입범위 및 분포편차에 따른 문턱전압이하 스윙의 변화를 관찰하고자 한다. 분석결과, 문턱전압이하 스윙은 도핑분포함수 및 게이트 전압 등에 따라 크게 영향을 받는 것을 관찰할 수 있었다.

Normal inverse Gaussian 분포에서 모수추정의 보정 방법 연구 (A numerical study of adjusted parameter estimation in normal inverse Gaussian distribution)

  • 윤정연;송성주
    • 응용통계연구
    • /
    • 제29권4호
    • /
    • pp.741-752
    • /
    • 2016
  • 금융자산의 수익률 분포를 잘 설명할 수 있는 것으로 알려진 normal inverse Gaussian(NIG)분포는 모수의 조건에 의해 세 배의 초과첨도가 왜도 제곱의 5배보다 커야 하는데, 만약 관측된 초과첨도와 왜도의 관계가 이를 만족하지 못하거나 두 값이 매우 비슷하다면 모수를 안정적으로 추정하기 어렵게 된다. 이 논문에서 우리는 NIG분포의 모수추정에서 발생하는 이러한 문제점을 살펴보고 모의실험을 통해 이를 보정하는 방법을 찾아보았다. KOSPI, S&P500, FTSE와 HANG SENG의 실제 주가지수 자료에 적용하여 보정의 효과를 비교하고 VaR를 이용한 사후검증으로 보정된 추정방법의 성능을 평가해 보았다. 보정 방법을 이용하였을 때, 모수추정의 문제가 있던 구간을 포함한 모든 구간에서 안정적인 모수추정이 가능하였고 VaR를 통한 사후 검증에서도 분포의 성능이 떨어지지 않음을 확인하였다.

가우시안 코플라를 이용한 반복측정 이변량 자료의 조건부 결합 분포 추정 (Estimation of the joint conditional distribution for repeatedly measured bivariate cholesterol data using Gaussian copula)

  • 곽민정
    • 응용통계연구
    • /
    • 제30권2호
    • /
    • pp.203-213
    • /
    • 2017
  • 우리는 이변량 경시적 자료의 조건부 결합 분포를 추정하기 위하여 회귀 모형과 코플라 모형을 연구하였다. 주변 분포의 추정을 위하여 시변 변환 모형을 고려하였고, 이변량 반응변수 각각에 대한 주변 분포를 가우시안 코플라를 이용하여 결합하여 조건부 결합 분포를 추정하였다. 우리가 제안한 모형은 조건부 평균 모형만으로 자료를 설명하기 어려운 경우에 적용될 수 있다. 시변 변환 모형과 가우시안 코플라 모형을 결합한 본 논문의 방법은 반복 측정된 이변량 경시적 자료에 대한 모형화가 용이하며 해석하기 쉬운 장점이 있다. 우리는 본 논문의 방법을 반복 측정된 이변량 콜레스테롤 자료를 분석하는데 적용하여 보았다.