Browse > Article
http://dx.doi.org/10.14695/KJSOS.2014.17.2.63

The ex-Gaussian analysis of reaction time distributions for cognitive experiments  

Park, Hyung-Bum (Department of Psychology, Chung-Ang University)
Hyun, Joo-Seok (Department of Psychology, Chung-Ang University)
Publication Information
Science of Emotion and Sensibility / v.17, no.2, 2014 , pp. 63-76 More about this Journal
Abstract
Although most behavioral reaction times (RTs) for cognitive tasks exhibit positively skewed distributions, the majority of studies primarily rely on a measure of central tendency (e.g. mean) which can cause misinterpretations of data's underlying property. The purpose of current study is to introduce procedures for describing characteristics of RT distributions, thereby effectively examine the influence of experimental manipulations. On the basis of assumption that RT distribution can be represented as a convolution of Gaussian and exponential variables, we fitted the ex-Gaussian function under a maximum-likelihood method. The ex-Gaussian function provides quantitative parameters of distributional properties and the probability density functions. Here we exemplified distributional analysis by using empirical RT data from two conventional visual search tasks, and attempted theoretical interpretation for setsize effect leading proportional mean RT delays. We believe that distributional RT analysis with a mathematical function beyond the central tendency estimates could provide insights into various theoretical and individual difference studies.
Keywords
reaction time; distributional analysis; ex-Gaussian model;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Anderson, B. A., & Folk, C. L. (2010). Variations in the magnitude of attentional capture: Testing a two-process model. Attention, Perception, & Psychophysics, 72(2), 342-352.   DOI
2 Anderson, D. E., & Awh, E. (2012). The plateau in mnemonic resolution across large set sizes indicates discrete resource limits in visual working memory. Attention, Perception, & Psychophysics, 74(5), 891-910.   DOI
3 Balota, D. A., & Spieler, D. H. (1999). Word frequency, repetition, and lexicality effects in word recognition tasks: Beyond measures of central tendency. Journal of Experimental Psychology: General, 128(1), 32-55.   DOI
4 Balota, D. A., & Yap, M. J. (2011). Moving beyond the mean in studies of mental chronometry the power of response time distributional analyses. Current Directions in Psychological Science, 20(3), 160-166.   DOI
5 Bays, P. M., & Husain, M. (2008). Dynamic shifts of limited working memory resources in human vision. Science, 321(5890), 851-854.   DOI
6 Bichot, N. P., Rossi, A. F., & Desimone, R. (2005). Parallel and serial neural mechanisms for visual search in macaque area V4. Science, 308(5721), 529-534.   DOI
7 Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433-436.   DOI
8 Brown, S., & Heathcote, A. (2003). QMLE: Fast, robust, and efficient estimation of distribution functions based on quantiles. Behavior Research Methods, Instruments, & Computers, 35(4), 485-492.   DOI
9 Bundesen, C. (1990). A theory of visual attention. Psychological review, 97(4), 523-547.   DOI   ScienceOn
10 Cave, K. R., & Wolfe, J. M. (1990). Modeling the role of parallel processing in visual search. Cognitive psychology, 22(2), 225-271.   DOI
11 Cousineau, D., & Shiffrin, R. M. (2004). Termination of a visual search with large display size effects. Spatial Vision, 17(4), 327-352.   DOI
12 Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(01), 87-114.   DOI
13 Coyle, T. R. (2003). A review of the worst performance rule: Evidence, theory, and alternative hypotheses. Intelligence, 31(6), 567-587.   DOI
14 Dehaene, S. (1989). Discriminability and dimensionality effects invisual search for featural conjunctions: A functional pop-out. Perception & Psychophysics, 46(1), 72-80.   DOI
15 Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual review of neuroscience, 18(1), 193-222.   DOI   ScienceOn
16 Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological review, 96(3), 433-458.   DOI
17 Frearson, W., & Eysenck, H. J. (1986). Intelligence, reaction time (RT) and a new 'odd-man-out' RT paradigm. Personality and Individual Differences, 7(6), 807-817.   DOI
18 Heathcote, A., Popiel, S. J., & Mewhort, D. J. (1991). Analysis of response time distributions: An example using the Stroop task. Psychological Bulletin, 109(2), 340-347.   DOI
19 Heathcote, A. (1996). RTSYS: A DOS application for the analysis of reaction time data. Behavior Research Methods, Instruments, & Computers, 28(3), 427-445.   DOI
20 Hockley, W. E. (1984). Analysis of response time distributions in the study of cognitive processes. Journal of Experimental Psychology: Learning, Memory, & Cognition, 10(4), 598-615.   DOI
21 Jensen, A. R., Schafer, E. W., & Crinella, F. M. (1981). Reaction time, evoked brain potentials, and psychometric g in the severely retarded. Intelligence, 5(2), 179-197.   DOI
22 Hohle, R. H. (1965). Inferred components of reaction time as a function of foreperiod duration. Journal of Experimental Psychology, 69(4), 382-386.   DOI
23 Hwang Gu, S. L., Gau, S. S. F., Tzang, S. W., & Hsu, W. Y. (2013). The ex-Gaussian distribution of reaction times in adolescents with attention-deficit/hyperactivity disorder. Research in developmental disabilities, 34(11), 3709-3719.   DOI
24 Jensen, A. R., & Munro, E. (1979). Reaction time, movement time, and intelligence. Intelligence, 3(2), 121-126.   DOI
25 Lacouture, Y., & Cousineau, D. (2008). How to use MATLAB to fit the ex-Gaussian and other probability functions to a distribution of response times. Tutorials in Quantitative Methods for Psychology, 4(1), 35-45.   DOI
26 Larson, G. E., & Alderton, D. L. (1990). Reaction time variability and intelligence: A "worst performance" analysis of individual differences. Intelligence, 14(3), 309-325.   DOI
27 Leth-Steensen, C., King Elbaz, Z., & Douglas, V. I. (2000). Mean response times, variability, and skew in the responding of ADHD children: a response time distributional approach. Acta psychologica, 104(2), 167-190.   DOI
28 Luce, R. D. (1986). Response Times: Their Role in Inferring Elementary Mental Organization. Oxford University Press, New York, NY.
29 Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279-281.   DOI   ScienceOn
30 Matzke, D., & Wagenmakers, E. J. (2009). Psychological interpretation of the ex-Gaussian and shifted Wald parameters: A diffusion model analysis. Psychonomic Bulletin & Review, 16(5), 798-817.   DOI
31 Nosofsky, R. M., & Palmeri, T. J. (1997). An exemplar-based random walk model of speeded classification. Psychological review, 104(2), 266-300.   DOI
32 McElree, B., & Carrasco, M. (1999). The temporal dynamics of visual search: evidence for parallel processing in feature and conjunction searches. Journal of Experimental Psychology: Human Perception and Performance, 25(6), 1517-1539.   DOI
33 Myung, I. J. (2003). Tutorial on maximum likelihood estimation. Journal of Mathematical Psychology, 47(1), 90-100.   DOI   ScienceOn
34 Nakayama, K., & Silverman, G. H. (1986). Serial and parallel processing of visual feature conjunctions. Nature, 320(6059), 264-265.   DOI   ScienceOn
35 Pearson, B., Raskevicius, J., Bays, P. M., Pertzov, Y., & Husain, M. (2014). Working memory retrieval as a decision process. Journal of vision, 14(2), 1-15.
36 Ratcliff, R., & Murdock, B. B. (1976). Retrieval processes in recognition memory. Psychological Review, 83(3), 190-214.   DOI
37 Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85(2), 59-108.   DOI
38 Ratcliff, R. (1979). Group reaction time distributions and an analysis of distribution statistics. Psychological Bulletin, 86(3), 446-461.   DOI
39 Ratcliff, R., & Rouder, J. N. (1998). Modeling response times for two-choice decisions. Psychological Science, 9(5), 347-356.   DOI
40 Ratcliff, R., & Rouder, J. N. (2000). A diffusion model account of masking in two-choice letter identification. Journal of Experimental Psychology: Human perception and performance, 26(1), 127-140.   DOI
41 Rohrer, D., & Wixted, J. T. (1994). An analysis of latency and interresponse time in free recall. Memory & Cognition, 22(5), 511-524.   DOI
42 Spieler, D. H., Balota, D. A., & Faust, M. E. (1996). Stroop performance in healthy younger and older adults and in individuals with dementia of the Alzheimer's type. Journal of Experimental Psychology: Human Perception and Performance, 22(2), 461-479.   DOI
43 Rouder, J. N., & Speckman, P. L. (2004). An evaluation of the Vincentizing method of forming group-level response time distributions. Psychonomic Bulletin & Review, 11(3), 419-427.   DOI
44 Schall, J. D., Purcell, B. A., Heitz, R. P., Logan, G. D., & Palmeri, T. J. (2011). Neural mechanisms of saccade target selection: gated accumulator model of the visual-motor cascade. European Journal of Neuroscience, 33(11), 1991-2002.   DOI
45 Schmiedek, F., Oberauer, K., Wilhelm, O., SuB, H. M., & Wittmann, W. W. (2007). Individual differences in components of reaction time distributions and their relations to working memory and intelligence. Journal of Experimental Psychology: General, 136(3), 414-429.   DOI
46 Sternberg, S. (1966). High-speed scanning in human memory. Science, 153(3736), 652-654.   DOI
47 Thornton, T. L., & Gilden, D. L. (2007). Parallel and serial processes in visual search. Psychological review, 114(1), 71-103.   DOI
48 Townsend, J. T. (1971). A note on the identifiability of parallel and serial processes. Perception & Psychophysics, 10(3), 161-163.   DOI
49 Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive psychology, 12(1), 97-136.   DOI   ScienceOn
50 Treisman, A. (1982). Perceptual grouping and attention in visual search for features and for objects. Journal of Experimental Psychology: Human Perception and Performance, 8(2), 194-214.   DOI   ScienceOn
51 Treisman, A. (1988). Features and objects: The fourteenth Bartlett memorial lecture. The quarterly journal of experimental psychology, 40(2), 201-237.   DOI
52 West, R., Murphy, K. J., Armilio, M. L., Craik, F. I., & Stuss, D. T. (2002). Lapses of intention and performance variability reveal age-related increases in fluctuations of executive control. Brain and cognition, 49(3), 402-419.   DOI
53 Treisman, A., & Sato, S. (1990). Conjunction search revisited. Journal of Experimental Psychology: Human Perception and Performance, 16(3), 459-478.   DOI
54 Tse, C. S., Balota, D. A., Yap, M. J., Duchek, J. M., & McCabe, D. P. (2010). Effects of healthy aging and early stage dementia of the Alzheimer's type on components of response time distributions in three attention tasks. Neuropsychology, 24(3), 300-315.   DOI
55 Van Zandt, T. (2000). How to fit a response time distribution. Psychonomic bulletin & review, 7(3), 424-465.   DOI
56 Wilken, P., & Ma, W. J. (2004). A detection theory account of change detection. Journal of Vision, 4(12), 1120-1135.
57 Wolfe, J. M. (1994). Guided search 2.0 a revised model of visual search. Psychonomic bulletin & review, 1(2), 202-238.   DOI   ScienceOn
58 Wolfe, J. M. (1998). What can 1 million trials tell us about visual search?. Psychological Science, 9(1), 33-39.   DOI   ScienceOn
59 Wolfe, J. M. (2003). Moving towards solutions to some enduring controversies in visual search. Trends in cognitive sciences, 7(2), 70-76.   DOI
60 Wolfe, J. M., Palmer, E. M., & Horowitz, T. S. (2010). Reaction time distributions constrain models of visual search. Vision research, 50(14), 1304-1311.   DOI
61 Zahn, T. P., Roberts, B. P., Schooler, C., & Cohen, R. (1998). Manual and saccadic reaction time with constant and variable preparatory intervals in schizophrenia. Journal of abnormal psychology, 107(2), 328-337.   DOI
62 Zhang, W., & Luck, S. J. (2008). Discrete fixed-resolution representations in visual working memory. Nature, 453(7192), 233-235.   DOI