DOI QR코드

DOI QR Code

A numerical study of adjusted parameter estimation in normal inverse Gaussian distribution

Normal inverse Gaussian 분포에서 모수추정의 보정 방법 연구

  • Received : 2016.04.11
  • Accepted : 2016.05.17
  • Published : 2016.06.30

Abstract

Numerous studies have shown that normal inverse Gaussian (NIG) distribution adequately fits the empirical return distribution of financial securities. The estimation of parameters can also be done relatively easily, which makes the NIG distribution more useful in financial markets. The maximum likelihood estimation and the method of moments estimation are easy to implement; however, we may encounter a problem in practice when a relationship among the moments is violated. In this paper, we investigate this problem in the parameter estimation and try to find a simple solution through simulations. We examine the effect of our adjusted estimation method with real data: daily log returns of KOSPI, S&P500, FTSE and HANG SENG. We also checked the performance of our method by computing the value at risk of daily log return data. The results show that our method improves the stability of parameter estimation, while it retains a comparable performance in goodness-of-fit.

금융자산의 수익률 분포를 잘 설명할 수 있는 것으로 알려진 normal inverse Gaussian(NIG)분포는 모수의 조건에 의해 세 배의 초과첨도가 왜도 제곱의 5배보다 커야 하는데, 만약 관측된 초과첨도와 왜도의 관계가 이를 만족하지 못하거나 두 값이 매우 비슷하다면 모수를 안정적으로 추정하기 어렵게 된다. 이 논문에서 우리는 NIG분포의 모수추정에서 발생하는 이러한 문제점을 살펴보고 모의실험을 통해 이를 보정하는 방법을 찾아보았다. KOSPI, S&P500, FTSE와 HANG SENG의 실제 주가지수 자료에 적용하여 보정의 효과를 비교하고 VaR를 이용한 사후검증으로 보정된 추정방법의 성능을 평가해 보았다. 보정 방법을 이용하였을 때, 모수추정의 문제가 있던 구간을 포함한 모든 구간에서 안정적인 모수추정이 가능하였고 VaR를 통한 사후 검증에서도 분포의 성능이 떨어지지 않음을 확인하였다.

Keywords

References

  1. Barndorff-Nielsen, O. E. (1977). Exponentially decreasing distributions for the logarithm of particle size. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 353, 401-419. https://doi.org/10.1098/rspa.1977.0041
  2. Barndorff-Nielsen, O. E. (1997). Processes of normal inverse gaussian type, Finance and Stochastics, 2, 41-68. https://doi.org/10.1007/s007800050032
  3. Barndorff-Nielsen, O. E., Blaesild, P., Jensen, J. L., and Sorensen, M. (1985). The Fascination of Sand, Springer, 57-87.
  4. Black, F. and Scholes, M. (1973). The pricing of options and corporate liabilities, The Journal of Political Economy, 2, 637-654.
  5. Carr, P., Geman, H., Madan, D., and Yor, M. (2002). The fine structure of asset returns: an empirical investigation, Journal of Business, 75, 305-333. https://doi.org/10.1086/338705
  6. Clark, P. K. (1973). A subordinated stochastic process model with finite variance for speculative prices, Econometrica, 41, 135-155. https://doi.org/10.2307/1913889
  7. Cox, J. and Ross, S. (1976). The valuation of options for alternative stochastic processes, Journal of Financial Economics, 3, 145-166. https://doi.org/10.1016/0304-405X(76)90023-4
  8. Eriksson, A., Ghysels, E., and Wang, F. (2009). The normal inverse Gaussian distribution and the pricing of derivatives, The Journal of Derivatives, 16, 23-37. https://doi.org/10.3905/JOD.2009.16.3.023
  9. Fielitz, B. D. and Smith, E. W. (1972). Asymmetric stable distributions of stock price changes, Journal of the American Statistical Association, 67, 813-814. https://doi.org/10.1080/01621459.1972.10481298
  10. Figueroa-Lopez, J. E., Lancette, S. R., Lee, K., and Mi, Y. (2011). Estimation of NIG and VG models for high frequency financial data, Handbook of Modeling High-Frequency Data in Finance, John Wiley & Sons, 3-26.
  11. Geman, H. (2002). Pure jump Levy processes for asset price modeling, Journal of Banking and Finance, 26, 1297-1316. https://doi.org/10.1016/S0378-4266(02)00264-9
  12. Ghysels, E. and Wang, F. (2014). Moment-implied densities: properties and applications, Journal of Business & Economic Statistics, 32, 88-111. https://doi.org/10.1080/07350015.2013.847842
  13. Hull, J. and White, A. (1987). The pricing of options on assets with stochastic volatilities, The Journal of Finance, 42, 281-300. https://doi.org/10.1111/j.1540-6261.1987.tb02568.x
  14. Kim, T. and Song, S. (2011). Value-at-Risk Estimation using NIG and VG Distribution, Journal of the Korean Data Analysis Society, 13, 1775-1788.
  15. Kupiec, P. H. (1995). Techniques for verifying the accuracy of risk measurement models, The Journal of Derivatives, 3, 73-84. https://doi.org/10.3905/jod.1995.407942
  16. Madan, D. and Seneta, E. (1990). The VG model for share market returns, Journal of Business, 63, 511-524. https://doi.org/10.1086/296519
  17. Mandelbrot, B. (1963). The variation of certain speculative prices, Journal of Business, 36, 394-419. https://doi.org/10.1086/294632
  18. Merton, R. C. (1976). Option pricing when underlying stock returns are discontinuous, Journal of Financial Economics, 3, 125-144. https://doi.org/10.1016/0304-405X(76)90022-2
  19. Prause, K. (1997). Modelling financial data using generalized hyperbolic distributions, FDM Preprint, 48, University of Freiburg.