• 제목/요약/키워드: Gauss hypergeometric function $_2F_1$

검색결과 20건 처리시간 0.022초

NEW RESULTS FOR THE SERIES 2F2(x) WITH AN APPLICATION

  • Choi, Junesang;Rathie, Arjun Kumar
    • 대한수학회논문집
    • /
    • 제29권1호
    • /
    • pp.65-74
    • /
    • 2014
  • The well known quadratic transformation formula due to Gauss: $$(1-x)^{-2a}{_2F_1}\[{{a,b;}\\\hfill{21}{2b;}}\;-\frac{4x}{(1-x)^2}\]={_2F_1}\[{{a,a-b+\frac{1}{2};}\\\hfill{65}{b+\frac{1}{2};}}\;x^2\]$$ plays an important role in the theory of (generalized) hypergeometric series. In 2001, Rathie and Kim have obtained two results closely related to the above quadratic transformation for $_2F_1$. Our main objective of this paper is to deduce some interesting known or new results for the series $_2F_1(x)$ by using the above Gauss's quadratic transformation and its contiguous relations and then apply our results to provide a list of a large number of integrals involving confluent hypergeometric functions, some of which are (presumably) new. The results established here are (potentially) useful in mathematics, physics, statistics, engineering, and so on.

CERTAIN INTEGRAL REPRESENTATIONS OF EULER TYPE FOR THE EXTON FUNCTION X8

  • Choi, June-Sang;Hasanov, Anvar;Turaev, Mamasali
    • 대한수학회논문집
    • /
    • 제27권2호
    • /
    • pp.257-264
    • /
    • 2012
  • Exton introduced 20 distinct triple hypergeometric functions whose names are $X_i$ (i = 1, ${\ldots}$, 20) to investigate their twenty Laplace integral representations whose kernels include the confluent hypergeometric functions $_0F_1$, $_1F_1$, a Humbert function ${\Psi}_1$, and a Humbert function ${\Phi}_2$. The object of this paper is to present 18 new integral representations of Euler type for the Exton hypergeometric function $X_8$, whose kernels include the Exton functions ($X_2$, $X_8$) itself, the Horn's function $H_4$, the Gauss hypergeometric function $F$, and Lauricella hypergeometric function $F_C$. We also provide a system of partial differential equations satisfied by $X_8$.

Certain Fractional Integral Operators and Extended Generalized Gauss Hypergeometric Functions

  • CHOI, JUNESANG;AGARWAL, PRAVEEN;JAIN, SILPI
    • Kyungpook Mathematical Journal
    • /
    • 제55권3호
    • /
    • pp.695-703
    • /
    • 2015
  • Several interesting and useful extensions of some familiar special functions such as Beta and Gauss hypergeometric functions and their properties have, recently, been investigated by many authors. Motivated mainly by those earlier works, we establish some fractional integral formulas involving the extended generalized Gauss hypergeometric function by using certain general pair of fractional integral operators involving Gauss hypergeometric function $_2F_1$, Some interesting special cases of our main results are also considered.

NOTE ON THE CLASSICAL WATSON'S THEOREM FOR THE SERIES 3F2

  • Choi, Junesang;Agarwal, P.
    • 호남수학학술지
    • /
    • 제35권4호
    • /
    • pp.701-706
    • /
    • 2013
  • Summation theorems for hypergeometric series $_2F_1$ and generalized hypergeometric series $_pF_q$ play important roles in themselves and their diverse applications. Some summation theorems for $_2F_1$ and $_pF_q$ have been established in several or many ways. Here we give a proof of Watson's classical summation theorem for the series $_3F_2$(1) by following the same lines used by Rakha [7] except for the last step in which we applied an integral formula introduced by Choi et al. [3].

FRACTIONAL CALCULUS OPERATORS OF THE PRODUCT OF GENERALIZED MODIFIED BESSEL FUNCTION OF THE SECOND TYPE

  • Agarwal, Ritu;Kumar, Naveen;Parmar, Rakesh Kumar;Purohit, Sunil Dutt
    • 대한수학회논문집
    • /
    • 제36권3호
    • /
    • pp.557-573
    • /
    • 2021
  • In this present paper, we consider four integrals and differentials containing the Gauss' hypergeometric 2F1(x) function in the kernels, which extend the classical Riemann-Liouville (R-L) and Erdélyi-Kober (E-K) fractional integral and differential operators. Formulas (images) for compositions of such generalized fractional integrals and differential constructions with the n-times product of the generalized modified Bessel function of the second type are established. The results are obtained in terms of the generalized Lauricella function or Srivastava-Daoust hypergeometric function. Equivalent assertions for the Riemann-Liouville (R-L) and Erdélyi-Kober (E-K) fractional integral and differential are also deduced.

CERTAIN DECOMPOSITION FORMULAS OF GENERALIZED HYPERGEOMETRIC FUNCTIONS pFq AND SOME FORMULAS OF AN ANALYTIC CONTINUATION OF THE CLAUSEN FUNCTION 3F2

  • Choi, June-Sang;Hasanov, Anvar
    • 대한수학회논문집
    • /
    • 제27권1호
    • /
    • pp.107-116
    • /
    • 2012
  • Here, by using the symbolical method introduced by Burchnall and Chaundy, we aim at constructing certain expansion formulas for the generalized hypergeometric function $_pF_q$. In addition, using our expansion formulas for $_pF_q$, we present formulas of an analytic continuation of the Clausen hypergeometric function $_3F_2$, which are much simpler than an earlier known result. We also give some integral representations for $_3F_2$.

APPELL'S FUNCTION F1 AND EXTON'S TRIPLE HYPERGEOMETRIC FUNCTION X9

  • Choi, Junesang;Rathie, Arjun K.
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제20권1호
    • /
    • pp.37-50
    • /
    • 2013
  • In the theory of hypergeometric functions of one or several variables, a remarkable amount of mathematicians's concern has been given to develop their transformation formulas and summation identities. Here we aim at presenting explicit expressions (in a single form) of the following weighted Appell's function $F_1$: $$(1+2x)^{-a}(1+2z)^{-b}F_1\;\(c,\;a,\;b;\;2c+j;\;\frac{4x}{1+2x},\;\frac{4z}{1+2z}\)\;(j=0,\;{\pm}1,\;{\ldots},\;{\pm}5)$$ in terms of Exton's triple hypergeometric $X_9$. The results are derived with the help of generalizations of Kummer's second theorem very recently provided by Kim et al. A large number of very interesting special cases including Exton's result are also given.

FUNCTIONAL RELATIONS INVOLVING SRIVASTAVA'S HYPERGEOMETRIC FUNCTIONS HB AND F(3)

  • Choi, Junesang;Hasanov, Anvar;Turaev, Mamasali
    • 충청수학회지
    • /
    • 제24권2호
    • /
    • pp.187-204
    • /
    • 2011
  • B. C. Carlson [Some extensions of Lardner's relations between $_0F_3$ and Bessel functions, SIAM J. Math. Anal. 1(2) (1970), 232-242] presented several useful relations between Bessel and generalized hypergeometric functions that generalize some earlier results. Here, by simply splitting Srivastava's hypergeometric function $H_B$ into eight parts, we show how some useful and generalized relations between Srivastava's hypergeometric functions $H_B$ and $F^{(3)}$ can be obtained. These main results are shown to be specialized to yield certain relations between functions $_0F_1$, $_1F_1$, $_0F_3$, ${\Psi}_2$, and their products including different combinations with different values of parameters and signs of variables. We also consider some other interesting relations between the Humbert ${\Psi}_2$ function and $Kamp\acute{e}$ de $F\acute{e}riet$ function, and between the product of exponential and Bessel functions with $Kamp\acute{e}$ de $F\acute{e}riet$ functions.

TWO RESULTS FOR THE TERMINATING 3F2(2) WITH APPLICATIONS

  • Kim, Yong-Sup;Choi, June-Sang;Rathie, Arjun K.
    • 대한수학회보
    • /
    • 제49권3호
    • /
    • pp.621-633
    • /
    • 2012
  • By establishing a new summation formula for the series $_3F_2(\frac{1}{2})$, recently Rathie and Pogany have obtained an interesting result known as Kummer type II transformation for the generalized hypergeometric function $_2F_2$. Here we aim at deriving their result by using a very elementary method and presenting two elegant results for certain terminating series $_3F_2(2)$. Furthermore two interesting applications of our new results are demonstrated.