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NEW RESULTS FOR THE SERIES 2F1(x) WITH AN

APPLICATION

Junesang Choi and Arjun Kumar Rathie

Abstract. The well known quadratic transformation formula due to
Gauss:

(1− x)−2a
2F1

[

a, b ;

2b ;
−

4x

(1 − x)2

]

= 2F1







a, a− b+
1

2
;

b+
1

2
;

x2







plays an important role in the theory of (generalized) hypergeometric
series. In 2001, Rathie and Kim have obtained two results closely related
to the above quadratic transformation for 2F1. Our main objective of
this paper is to deduce some interesting known or new results for the
series 2F1(x) by using the above Gauss’s quadratic transformation and
its contiguous relations and then apply our results to provide a list of a
large number of integrals involving confluent hypergeometric functions,
some of which are (presumably) new. The results established here are
(potentially) useful in mathematics, physics, statistics, engineering, and
so on.

1. Introduction and preliminaries

The generalized hypergeometric series pFq is defined by (see [16, p. 73]):

(1.1)
pFq

[

α1, . . . , αp ;

β1, . . . , βq ;
z

]

=

∞
∑

n=0

(α1)n · · · (αp)n
(β1)n · · · (βq)n

zn

n!

= pFq(α1, . . . , αp; β1, . . . , βq; z),

where (λ)n is the Pochhammer symbol defined (for λ ∈ C) by (see [19, p. 2 and
p. 6] and [20, p. 2 and pp. 4–6]):

(λ)n : =

{

1 (n = 0)

λ(λ+ 1) . . . (λ+ n− 1) (n ∈ N := {1, 2, 3, . . .})(1.2)
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=
Γ(λ+ n)

Γ(λ)
(λ ∈ C \ Z−

0 )

and Z
−

0 denotes the set of nonpositive integers, C the set of complex numbers,
and Γ(λ) is the familiar Gamma function. Here p and q are positive integers
or zero (interpreting an empty product as 1), and we assume (for simplicity)
that the variable z, the numerator parameters α1, . . . , αp, and the denominator
parameters β1, . . . , βq take on complex values, provided that no zeros appear
in the denominator of (1.1), that is, that

(1.3) (βj ∈ C \ Z−

0 ; j = 1, . . . , q).

For the detailed conditions for the convergence of the series in (1.1), see, for
example, [19, Section 1.4] and [20, Section 1.5]. It is only noted that if one of
the numerator parameters, say, aj is a negative integer, then the series in (1.1)
reduces to a polynomial in z of degree −aj .

It should also be remarked here that whenever hypergeometric function 2F1

and generalized hypergeometric functions pFq are expressed in terms of the
Gamma function, the results are usually important, in particular, from the
application point of view. Therefore, the well known summation theorems
such as those of Gauss, Gauss’s second, Bailey and Kummer for the series

2F1 and Watson, Dixon and Whipple for the series 3F2 and their extensions
and generalizations (see [8], [9], [10], [11] and [13]) play an important role in
the theory of generalized hypergeometric series. For applications of the above-
mentioned classical summation theorems, we refer to [1], [2], [5], [6], [11], [13],
[15] and [16].

By employing the above-mentioned classical summation theorems, Bailey [1]
obtained a large number of known or new results involving certain products of
hypergeometric series, quadratic transformation formulas and other results. In
our present investigation we are interested in the following quadratic transfor-
mation formula due to Gauss [4]:

(1.4) (1− x)−2a
2F1

[

a, b ;

2b ;
− 4x

(1− x)2

]

= 2F1







a, a− b+
1

2
;

b+
1

2
;

x2






.

Bailey [1] rederived this result by using the following classical Watson’s sum-
mation theorem (see, for example, [19, p. 251] and [18]):

3F2

[

a, b, c ;

1
2 (a+ b+ 1), 2c ;

1

]

(1.5)

=
Γ
(

1
2

)

Γ
(

c+ 1
2

)

Γ
(

1
2 + 1

2a+
1
2b
)

Γ
(

1
2 − 1

2a− 1
2b+ c

)

Γ
(

1
2 + 1

2a
)

Γ
(

1
2 + 1

2b
)

Γ
(

1
2 − 1

2a+ c
)

Γ
(

1
2 − 1

2b+ c
) ,

provided ℜ(2c − a − b) > −1. By making use of the following results closely
related to the classical Watson’s theorem (1.5) obtained earlier by Lavoie et al.
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[8]:

3F2

[

a, b, c ;

1
2 (a+ b+ 1), 2c+ 1 ;

1

]

(ℜ(2c− a− b) > −3)(1.6)

=
2a+b−2 Γ

(

1
2a+

1
2 b+

1
2

)

Γ
(

c+ 1
2

)

Γ
(

c− 1
2a− 1

2b+
1
2

)

Γ
(

1
2

)

Γ (a) Γ (b)

·
{

Γ
(

1
2a

)

Γ
(

1
2b
)

Γ
(

c− 1
2a+

1
2

)

Γ
(

c− 1
2b+

1
2

) − Γ
(

1
2a+ 1

2

)

Γ
(

1
2b+

1
2

)

Γ
(

c− 1
2a+ 1

)

Γ
(

c− 1
2b+ 1

)

}

and

3F2

[

a, b, c ;

1
2 (a+ b+ 1), 2c− 1 ;

1

]

(ℜ(2c− a− b) > 1)(1.7)

=
2a+b−2 Γ

(

1
2a+

1
2b+

1
2

)

Γ
(

c− 1
2

)

Γ
(

c− 1
2a− 1

2b− 1
2

)

Γ
(

1
2

)

Γ (a) Γ (b)

·
{

Γ
(

1
2a

)

Γ
(

1
2b
)

Γ
(

c− 1
2a− 1

2

)

Γ
(

c− 1
2b − 1

2

) +
Γ
(

1
2a+

1
2

)

Γ
(

1
2b+

1
2

)

Γ
(

c− 1
2a

)

Γ
(

c− 1
2b
)

}

.

Rathie and Kim [17] established the following two results contiguous to the
quadratic transformation formula (1.4):

(1− x)−2a
2F1

[

a, b ;

2b+ 1 ;
− 4x

(1− x)2

]

(1.8)

= 2F1







a, a− b+
1

2
;

b+
1

2
;

x2






+

2ax

2b+ 1
2F1







a+ 1, a− b +
1

2
;

b +
3

2
;

x2







and

(1− x)−2a
2F1

[

a, b ;

2b− 1 ;
− 4x

(1− x)2

]

(1.9)

= 2F1







a, a− b+
3

2
;

b− 1

2
;

x2






− 2ax

2b− 1
2F1







a+ 1, a− b+
3

2
;

b+
1

2
;

x2






.

Our work here is organized as follows: In Section 2, we establish some new or
known results for the series 2F1 [a, b ; c; x] by employing the Gauss’s quadratic
transformation formula (1.4) and its contiguous results (1.8) and (1.9). In
Section 3, we provide a list of a large number of integrals involving confluent
hypergeometric functions.
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2. Some results for the series 2F1(x)

The results to be established in this section are as follows:

(2.1) 2F1





γ, γ +
1

2
;

2 γ ;
z



 = (1− z)−
1

2

(

2

1 +
√
1− z

)2γ−1

.

(2.2) 2F1





γ, γ − 1

2
;

2 γ ;
z



 =

(

2

1 +
√
1− z

)2γ−1

.

(2.3) 2F1





γ, γ − 1

2
;

2 γ + 1 ;
z



 =
2γ

√
1− z + 1

2γ + 1

(

2

1 +
√
1− z

)2γ

.

(2.4) 2F1





γ + 1, γ − 1

2
;

2 γ + 1 ;
z



 =
2γ +

√
1− z

2γ + 1

(

2

1 +
√
1− z

)2γ

.

(2.5) 2F1

[

2α, β + 1 ;

β ;
z

]

=

[

1 +
z

β
(2α− β)

]

(1− z)−2α−1.

Proof. The derivation of the above results are quite straight forward. For
example, when we establish the result (2.1), first replace x by −x in (1.4) and
set z = 4x

1+x2 with a = γ + 1
2 and b = γ, and make use of the well-known

binomial theorem:

(2.6) (1− z)−a = 1F0

[

a ;

;
z

]

(|z| < 1),

we get (2.1). In a similar manner as in getting (2.1), first replacing x by −x
and setting z = 4x

(1+x)2 , and taking

(i) a = γ − 1
2 and b = γ;

(ii) a = γ − 1
2 and b = γ;

(iii) a = γ − 1
2 and b = γ + 1

in (1.4), (1.8) and (1.9), respectively, we obtain (2.2), (2.3) and (2.4), respec-
tively.

In order to derive (2.5), let L denote the left-hand side of (2.5). Then, by
definition, we have

L =
∞
∑

n=0

(2α)n
n!

zn
(β + 1)n
(β)n

.

Noting (β + 1)n/(β)n = 1 + n
β
, we have

L =

∞
∑

n=0

(2α)n
n!

zn +
1

β

∞
∑

n=1

(2α)n
(n− 1)!

zn.
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Setting n−1 = n′ in the second series and dropping the prime on n and noting
(α)n+1 = α (α+ 1)n, we have

L =
∞
∑

n=0

(2α)n
n!

zn +
2αz

β

∞
∑

n=0

(2α+ 1)n
n!

zn.

By applying the binomial theorem (2.6) to the two last series, we get

L = 1F0

[

2α ;

;
z

]

+
2α z

β
1F0

[

2α+ 1 ;

;
z

]

= (1− z)−2α +
2α z

β
(1− z)−2α−1

=

[

1 +
z

β
(2α− β)

]

(1 − z)−2α−1,

which is the right-hand side of (2.5). �

It is remarked in passing that (2.1) and (2.2) are known results (see [12])
while the results (2.3) and (2.4) seem to be new.

3. Integrals involving confluent hypergeometric functions

In this section, by using the results established in Section 2, we provide a
list of a large number of certain interesting integrals involving confluent hy-
pergeometric functions. To do this, we recall a well-known integral involving
confluent hypergeometric function (see, for example, [12, p. 278]):

(3.1)

∫

∞

0

e−h t td−1
1F1

[

a ;

b ;
kt

]

dt =
Γ(d)

hd 2F1

[

d, a ;

b ;

k

h

]

,

provided ℜ(d) > 0, ℜ(h) > 0 and |k| < |h|. It is noted that the integral formula
(3.1) is a special case of a known general result recorded in [14, p. 546, Entry
3.38.1].

Many interesting integrals involving confluent hypergeometric functions can
easily be obtained from (3.1) by using the results in Section 2. Since these
integrals in this section are easily derivable, we give them here without their
proofs:

1. ℜ(h) > 0, ℜ(a) > 0 and |k| < |h|

(3.2)

∫

∞

0

e−h t ta−1
1F1





a+
1

2
;

2a ;
kt



 dt

=
Γ(a)

ha 2F1





a+
1

2
, a ;

2a ;

k

h



 =
Γ(a)

ha

(

1− k

h

)

−
1

2





2

1 +
√

1− k
h





2a−1

.



70 JUNESANG CHOI AND ARJUN KUMAR RATHIE

2. ℜ(h) > 0, ℜ(a) > − 1
2 and |k| < |h|

(3.3)

∫

∞

0

e−h t ta−
1

2 1F1

[

a ;

2a ;
kt

]

dt

=
Γ
(

a+ 1
2

)

ha+ 1

2

2F1





a+
1

2
, a ;

2a ;

k

h





=
Γ
(

a+ 1
2

)

ha+ 1

2

(

1− k

h

)

−
1

2





2

1 +
√

1− k
h





2a−1

.

3. ℜ(h) > 0, ℜ(a) > −1 and |k| < |h|

(3.4)

∫

∞

0

e−h t ta 1F1





a+
1

2
;

2a+ 1 ;
kt



 dt

=
Γ (a+ 1)

ha+1 2F1





a+
1

2
, a+ 1 ;

2a+ 1 ;

k

h





=
Γ (a+ 1)

ha+1

(

1− k

h

)

−
1

2





2

1 +
√

1− k
h





2a

.

4. ℜ(h) > 0, ℜ(a) > − 1
2 and |k| < |h|

(3.5)

∫

∞

0

e−h t ta−
1

2 1F1

[

a+ 1 ;

2a+ 1 ;
kt

]

dt

=
Γ
(

a+ 1
2

)

ha+ 1

2

2F1





a+
1

2
, a+ 1 ;

2a+ 1 ;

k

h





=
Γ
(

a+ 1
2

)

ha+ 1

2

(

1− k

h

)

−
1

2





2

1 +
√

1− k
h





2a

.

5. ℜ(h) > 0, ℜ(a) > 0 and |k| < |h|

(3.6)

∫

∞

0

e−h t ta−1
1F1





a− 1

2
;

2a ;
kt



 dt

=
Γ (a)

ha 2F1





a− 1

2
, a ;

2a ;

k

h



 =
Γ (a)

ha





2

1 +
√

1− k
h





2a−1

.
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6. ℜ(h) > 0, ℜ(a) > 1
2 and |k| < |h|

(3.7)

∫

∞

0

e−h t ta−
3

2 1F1

[

a ;

2a ;
kt

]

dt

=
Γ
(

a− 1
2

)

ha− 1

2

2F1





a− 1

2
, a ;

2a ;

k

h



 =
Γ
(

a− 1
2

)

ha− 1

2





2

1 +
√

1− k
h





2a−1

.

7. ℜ(h) > 0, ℜ(a) > 0 and |k| < |h|

(3.8)

∫

∞

0

e−h t ta−1
1F1





a+
1

2
;

2a+ 1 ;
kt



 dt

=
Γ (a)

ha 2F1





a+
1

2
, a ;

2a+ 1 ;

k

h



 =
Γ (a)

ha





2

1 +
√

1− k
h





2a

.

8. ℜ(h) > 0, ℜ(a) > − 1
2 and |k| < |h|

(3.9)

∫

∞

0

e−h t ta−
1

2 1F1

[

a ;

2a+ 1 ;
kt

]

dt

=
Γ
(

a+ 1
2

)

ha+ 1

2

2F1





a+
1

2
, a ;

2a+ 1 ;

k

h



 =
Γ
(

a+ 1
2

)

ha+ 1

2





2

1 +
√

1− k
h





2a

.

9. ℜ(h) > 0, ℜ(a) > 0 and |k| < |h|
(3.10)

∫

∞

0

e−h t ta−1
1F1





a− 1

2
;

2a+ 1 ;
kt



 dt

=
Γ (a)

ha 2F1





a− 1

2
, a ;

2a+ 1 ;

k

h



 =
Γ (a)

ha

2a
√

1− k
h
+ 1

2a+ 1





2

1 +
√

1− k
h





2a

.

10. ℜ(h) > 0, ℜ(a) > 1
2 and |k| < |h|

(3.11)

∫

∞

0

e−h t ta−
3

2 1F1

[

a ;

2a+ 1 ;
kt

]

dt

=
Γ
(

a− 1
2

)

ha− 1

2

2F1





a− 1

2
, a ;

2a+ 1 ;

k

h





=
Γ
(

a− 1
2

)

ha− 1

2

2a
√

1− k
h
+ 1

2a+ 1





2

1 +
√

1− k
h





2a

.
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11. ℜ(h) > 0, ℜ(a) > 0 and |k| < |h|

(3.12)

∫

∞

0

e−h t ta−1
1F1





a+
1

2
;

2a+ 2 ;
kt



 dt

=
Γ (a)

ha 2F1





a+
1

2
, a ;

2a+ 2 ;

k

h





=
Γ (a)

ha

(2a+ 1)
√

1− k
h
+ 1

2a+ 2





2

1 +
√

1− k
h





2a+1

.

12. ℜ(h) > 0, ℜ(a) > − 1
2 and |k| < |h|

(3.13)

∫

∞

0

e−h t ta−
1

2 1F1

[

a ;

2a+ 2 ;
kt

]

dt

=
Γ
(

a+ 1
2

)

ha+ 1

2

2F1





a+
1

2
, a ;

2a+ 2 ;

k

h





=
Γ
(

a+ 1
2

)

ha+ 1

2

(2a+ 1)
√

1− k
h
+ 1

2a+ 2





2

1 +
√

1− k
h





2a+1

.

13. ℜ(h) > 0, ℜ(a) > 0 and |k| < |h|
(3.14)

∫

∞

0

e−h t t2a−1
1F1

[

b+ 1 ;

b ;
kt

]

dt

=
Γ (2a)

h2a 2F1

[

2a, b+ 1 ;

b ;

k

h

]

=
Γ (2a)

h2a

[

1 +
k(2a− b)

bh

] (

1− k

h

)

−2a−1

.

14. ℜ(h) > 0, ℜ(b) > −1 and |k| < |h|
(3.15)

∫

∞

0

e−h t tb 1F1

[

2a ;

b ;
kt

]

dt

=
Γ (b+ 1)

hb+1 2F1

[

2a, b+ 1 ;

b ;

k

h

]

=
Γ (b+ 1)

hb+1

[

1 +
k(2a− b)

bh

] (

1− k

h

)

−2a−1

.

Remark. If we set b = a in (3.14) and (3.15), we, respectively, get

15. ℜ(h) > 0, ℜ(a) > 0 and |k| < |h|

(3.16)

∫

∞

0

e−h t t2a−1
1F1

[

a+ 1 ;

a ;
kt

]

dt

=
Γ (2a)

h2a 2F1

[

2a, a+ 1 ;

a ;

k

h

]

= Γ (2a) (h+ k) (h− k)−2a−1;
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16. ℜ(h) > 0, ℜ(a) > −1 and |k| < |h|
(3.17)

∫

∞

0

e−h t ta 1F1

[

2a ;

a ;
kt

]

dt

=
Γ (a+ 1)

ha+1 2F1

[

2a, a+ 1 ;

a ;

k

h

]

=
Γ (a+ 1)

ha+1

(

1 +
k

h

) (

1− k

h

)

−2a−1

,

which are found to be special cases of an integral formula in [12, p. 278]. The
results (3.10) and (3.15) are believed to be new.
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