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TWO RESULTS FOR THE TERMINATING

3F2(2) WITH APPLICATIONS

Yong Sup Kim, Junesang Choi, and Arjun K. Rathie

Abstract. By establishing a new summation formula for the series

3F2(
1
2
), recently Rathie and Pogany have obtained an interesting result

known as Kummer type II transformation for the generalized hypergeo-

metric function 2F2. Here we aim at deriving their result by using a very
elementary method and presenting two elegant results for certain termi-
nating series 3F2(2). Furthermore two interesting applications of our new

results are demonstrated.

1. Introduction and preliminaries

The generalized hypergeometric function with p numeratorial and q denom-
inatorial parameters is defined by (see [23, p. 73])

(1.1)

pFq

[
α1, . . . , αp

β1, . . . , βq
; z

]
= pFq [α1, . . . , αp;β1, . . . , βq ; z]

=
∞∑

n=0

(α1)n · · · (αp)n
(β1)n · · · (βq)n

zn

n !
,

where (α)n denotes the Pochhammer symbol (or the shifted factorial, since
(1)n = n!) defined for any complex number α by

(1.2) (α)n =

{
α(α+ 1) · · · (α+ n− 1), if n ∈ N = {1, 2, . . .},
1, if n = 0.

Using the fundamental functional relation of the Gamma function Γ:
Γ(α+ 1) = αΓ(α), (α)n can be written as

(1.3) (α)n =
Γ(α+ n)

Γ(α)
(n ∈ N0 := N ∪ {0}) .
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It should be remarked here that whenever hypergeometric and generalized
hypergeometric functions can be summed to be expressed in terms of Gamma
functions, the results are very important from the application points of view.
Moreover, it is well-known that, if the product of two hypergeometric or gen-
eralized hypergeometric series can be expressed as a series with argument x,
the coefficient of xn in the product must be expressible in terms of Gamma
functions. It is also noted that summation formulas for pFq have been known
for only very restricted arguments and parameters, for example, Gauss’s sum-
mation theorem, Gauss’s second summation theorem, Kummer’s summation
and Bailey’s summation theorems for the series 2F1, and Dixon’s, Watson’s,
Whipple’s and Saalschütz’s summation theorems for the series 3F2. Recently
a good progress has been done in generalizing the above mentioned classical
summation theorems, for example, see [12, 17-21]. For applications, among
other things, we refer to the works [12, 13, 17-21, 24, 33].

We begin by recalling the well-known and classical Gauss’s summation the-
orem (see [23, p. 49])

(1.4) 2F1

[
a, b

c
; 1

]
=

Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
(ℜe(c− a− b) > 0)

and Gauss’s second summation theorem (see [1], [23, p. 69])

(1.5) 2F1

 a, b

1

2
(a+ b+ 1)

;
1

2

 =
Γ( 12 )Γ(

1
2a+ 1

2b+
1
2 )

Γ( 12a+ 1
2 )Γ(

1
2b+

1
2 )

.

Also, from the theory of differential equations, Kummer [15, 16] established
the following two results which are known in the literature as the Kummer’s
first and second transformations, respectively:

(1.6) e−x
1F1

[
a

b
; x

]
= 1F1

[
b− a

b
; −x

]
and

(1.7) e−
1
2x 1F1

[
a

2a
; x

]
= 0F1

 −

a+
1

2

;
x2

16

 .

From (1.7) it is not difficult to derive the following results

(1.8) 2F1

[−2n, a

2a
; 2

]
=

( 12 )n

(a+ 1
2 )n

(n ∈ N0)

and

(1.9) 2F1

[−2n− 1, a

2a
; 2

]
= 0 (n ∈ N0) .



TWO RESULTS FOR THE TERMINATING 3F2(2) WITH APPLICATIONS 623

Bailey [3] derived (1.6) and (1.7) by using Gauss’s summation theorem (1.4)
and Gauss’s second summation theorem (1.5) respectively. Rathie and Choi
[25] derived (1.7) by employing Gauss’s summation theorem (1.4).

In 1995, Rathie and Nagar [26] obtained two results closely related to (1.7)
which are recalled here for our present investigation:

(1.10)

e−
1
2x 1F1

[
a

2a+ 1
; x

]

= 0F1

 −

a+
1

2

;
x2

16

− x

2(2a+ 1)
0F1

 −

a+
3

2

;
x2

16


and

(1.11)

e−
1
2x 1F1

[
a

2a− 1
; x

]

= 0F1

 −

a− 1

2

;
x2

16

− x

2(2a− 1)
0F1

 −

a+
1

2

;
x2

16

 .

Also, the well known interesting and useful quadratic transformation due to
Kummer [15, 16] is recalled:

(1.12) 2F1

[
r,m

2m
;

2x

1 + x

]
= (1 + x)r 2F1


1

2
r,
1

2
r +

1

2

m+
1

2

; x2

 .

In 1836, Kummer [15] established this formula by employing the theory of
differential equations. Rainville [23, p. 65] recorded this quadratic transforma-
tion as in the following theorem.

Theorem 1. If 2b is neither zero nor a negative integer and if |y| < 1
2 and∣∣∣ y

1−y

∣∣∣ < 1, then we have

(1.13) (1− y)−a
2F1


1

2
a,

1

2
a+

1

2

b+
1

2

;

(
y

1− y

)2

 = 2F1

[
a, b

2b
; 2y

]
.

Remark 1. For application of the results (1.8), (1.9) in Reed Dawson identity,
see [7]. Rainville [23] noted that the formula (1.13) can be established with the
help of the classical Gauss’s summation theorem (1.4). Very recently, Rathie
and Pandey [27] rederived (1.12) by employing the results (1.8) and (1.9).
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In 1997, Exton [9] established the following very interesting result for the
generalized hypergeometric function 2F2:

(1.14) e−x
2F2

 a, 1 +
1

2
a

b,
1

2
a

; x

 = 2F2

[
b− a− 1, 2 + a− b

b, 1 + a− b
; −x

]
.

This result is an analogue of the Kummer type I transformation (1.6). In
2005, Paris [22] generalized (1.14) in the form

(1.15) e−x
2F2

[
a, 1 + d

b, d
; x

]
= 2F2

[
b− a− 1, f + 1

b, f
; −x

]
,

where

(1.16) f =
d(1 + a− b)

a− d
.

In 2007, Rathie and Paris [28] derived (1.15) by using a different method.
Motivated by the Kummer type I transformation (1.15) for the generalized
hypergeometric function 2F2 obtained by Paris [22], very recently Rathie and
Pogany [29] presented a Kummer type II transformation for the generalized
hypergeometric function 2F2:

(1.17)

e−
x
2 2F2

[
a, 1 + d

2a+ 1, d
; x

]

= 0F1

 −

a+
1

2

;
x2

16

−
x
(
1− 2a

d

)
2(2a+ 1)

0F1

 −

a+
3

2

;
x2

16

 .

On the other hand, just as the Gauss function 2F1 was extended to pFq by
increasing the number of parameters in the numerator as well as in the denom-
inator, the four Appell functions were introduced, unified, and generalized by
Appell and Kampé de Fériet [2] who defined a general hypergeometric function
in two variables. For more details, one refers to [30]. The notation defined
and introduced by Kampé de Fériet for this double hypergeometric function of
superior order was subsequently abbreviated by Burchnall and Chaundy [4, 5].
We, however, recall here the definition of a more general double hypergeomet-
ric function (than the one defined by Kampé de Fériet) in a slightly modified
notation given by Srivastava and Panda [32, p. 423, Eq.(26)].

For this, let (Hh) denote the sequence of parameters (H1,H2, . . . ,Hh) and
for non-negative integers, define the Pochhammer symbol

((Hh))n = (H1)n(H2)n · · · (Hh)n,

where, when n = 0, the product is understood to reduce to unity. Therefore,
the convenient generalization of the Kampé de Fériet function is defined as
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follows:

(1.18)

F
h : a; b

g : c; d

[
(Hh) : (Aa); (Bb);

(Gg) : (Cc); (Dd);
x, y

]

=
∞∑

m=0

∞∑
n=0

((Hh))m+n ((Aa))m ((Bb))n
((Gg))m+n ((Cc))m ((Dd))n

xm

m!

yn

n!
.

Here, the symbol (H) is convenient contraction for the sequence of the parame-
ters H1,H2, . . . , Hh and the Pochhammer symbol (H)n is defined in (1.3). For
more details about the convergence for this function, we refer to the book [31].

Various authors, see, for example, [6, 8, 10, 11, 14] have investigated the
reducibility of the Kampé de Fériet function. Very recently, Kim [11] presented
the following interesting result for the reducibility of Kampé de Fériet function:

(1.19)

F
h : 1; 0

g : 1; 0

[
(H); a;−;

(G); 2a;−;
x,−1

2
x

]

= 2hF2g+1


(
1

2
H

)
,

(
1

2
H +

1

2

)
(
1

2
G

)
,

(
1

2
G+

1

2

)
, a+

1

2

; 22h−2g−4x2


by employing Gauss’s second summation theorem (1.5) and also obtained two
results closely related to it.

The present research is organized as follows. In Section 2, we establish a
Kummer type II transformation (1.17) in a very elementary way. In Section
3, we derive two very elegant results for the terminating series 3F2(2). As an
application of our new results, in Section 4, we establish a natural extension of
quadratic transformation (1.12) due to Kummer. In Section 5, we obtain an
interesting result for the reducibility of Kampé de Fériet function.

2. Another method for proving (1.17)

In order to prove (1.17), we proceed as follows. Using the elementary relation
(1 + d)n/(d)n = 1 + n/d, it is not difficult to prove the following relation

(2.1)

2F2

[
a, 1 + d

2a+ 1, d
; x

]
= 1F1

[
a

2a+ 1
; x

]
+

ax

d(2a+ 1)
1F1

[
a+ 1

2a+ 2
; x

]
.
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Now, multiplying both sides of (2.1) by e−x/2, we have

(2.2)

e−x/2
2F2

[
a, 1 + d

2a+ 1, d
; x

]
= e−x/2

1F1

[
a

2a+ 1
; x

]
+

ax

d(2a+ 1)
e−x/2

1F1

[
a+ 1

2a+ 2
; x

]
.

Then it is found that the first and second expression on the right hand side of
(2.2) can now be evaluated with the help of the known results (1.10) and (1.7),
respectively. After a little simplification, we easily arrive at the right hand side
of (1.17). This completes the proof of (1.17).

Remark 2. It is interesting to mention here that the special case of (1.17) when
d = 2a yields the well known Kummer type II transformation (1.7). Thus (1.17)
may be regarded as an extension of (1.7).

3. New results for the series 3F2(2)

Here we present two (presumably) new and interesting results for the series

3F2(2) as in the following theorem.

Theorem 2. Each of the following identities holds true:

(3.1) 3F2

[−2n, a, 1 + d

2a+ 1, d
; 2

]
=

( 12 )n

(a+ 1
2 )n

(n ∈ N0)

and

(3.2) 3F2

[−2n− 1, a, 1 + d

2a+ 1, d
; 2

]
=

(
1− 2a

d

)
(2a+ 1)

( 32 )n

(a+ 3
2 )n

(n ∈ N0).

Proof. Let us denote the left hand side of (1.17) by S. Then, expressing the
involved functions in series, we have

(3.3)

S =
∞∑

n=0

(−1)n

2n
xn

n!

∞∑
m=0

(a)m(1 + d)m
(2a+ 1)m(d)m

xm

m!

=
∞∑

n=0

∞∑
m=0

(a)m(1 + d)m
(2a+ 1)m(d)m

(−1)n

2n n! m!
xn+m.

Using the following formal manipulation of a double series (see [23, p. 56,
Lemma 10]):

(3.4)
∞∑

n=0

∞∑
k=0

A(k, n) =
∞∑

n=0

n∑
k=0

A(k, n− k),

we have

S =
∞∑

n=0

(−1)n

2n
xn

n∑
m=0

(a)m(1 + d)m
(2a+ 1)m(d)m

2m(−1)m

(n−m)! m!
.
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Using the following identity

(3.5) (n− k)! =
(−1)k n!

(−n)k
(0 ≦ k ≦ n),

we obtain

S =
∞∑

n=0

(−1)n

2n n!
xn

∞∑
m=0

(a)m(1 + d)m
(2a+ 1)m(d)m

(−n)m 2m

m!
,

since (−n)m = 0 if m > n. Summing up inner series, we have

(3.6) S =
∞∑

n=0

(−1)n

2n n!
xn

3F2

[−n, a, d+ 1

2a+ 1, d
; 2

]
.

Separating (3.6) into even and odd powers of x and using the results

(2n)! = 22n n! ( 12 )n and (2n+ 1)! = 22n n! ( 32 )n,

we get

(3.7)

S =

∞∑
n=0

x2n

24n( 12 )n n!
3F2

[−2n, a, 1 + d

2a+ 1, d
; 2

]

−
∞∑

n=0

x2n+1

24n+1( 32 )n n!
3F2

[−2n− 1, a, 1 + d

2a+ 1, d
; 2

]
.

Thus, from (1.17), we obtain

(3.8)

∞∑
n=0

x2n

24n ( 12 )n n!
3F2

[−2n, a, 1 + d

2a+ 1, d
; 2

]

−
∞∑

n=0

x2n+1

24n+1 ( 32 )n n!
3F2

[−2n− 1, a, 1 + d

2a+ 1, d
; 2

]

=
∞∑

n=0

x2n

24n (a+ 1
2 )n n!

−
(
1− 2a

d

)
2(2a+ 1)

∞∑
n=0

x2n+1

24n(a+ 3
2 )n n!

.

Finally, equating the coefficients of x2n and x2n+1 on both sides of (3.8), we
get the results (3.1) and (3.2). This completes the proof. □

Remark 3. The result (3.1) seems to be very interesting since the right hand
side of it is independent of the parameter d. Setting d = 2a in (3.1) and (3.2)
yields (1.8) and (1.9) respectively. Thus (3.1) and (3.2) may be regarded as
extensions of (1.8) and (1.9) respectively.

Applications of our new results (3.1) and (3.2) are given in the following
sections.
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4. Extension of a transformation (1.12) due to Kummer

Here we establish a natural extension of the Kummer’s transformation (1.12)
as in the following theorem.

Theorem 3. The following identity holds true:

(4.1)

(1 + x)−r
3F2

[
r,m, d+ 1

2m+ 1, d
;

2x

1 + x

]

= 2F1


1

2
r,
1

2
r +

1

2

m+
1

2

; x2

−
xr

(
1− 2m

d

)
(2m+ 1)

2F1


1

2
r +

1

2
,
1

2
r + 1

m+
3

2

; x2

 .

Proof. In order to prove (4.1), it is seen to be sufficient to show that

(4.2)

(1− x)−r
3F2

[
r,m, d+ 1

2m+ 1, d
; − 2x

1− x

]

= 2F1


1

2
r,
1

2
r +

1

2

m+
1

2

; x2

+
xr

(
1− 2m

d

)
(2m+ 1)

2F1


1

2
r +

1

2
,
1

2
r + 1

m+
3

2

; x2

 .

Denoting the left hand side of (4.2) by L and expressing 3F2 as a series, after
some simplification, we get

L =
∞∑
k=0

(r)k (m)k (d+ 1)k
(2m+ 1)k (d)k

(−2)k xk

k!
(1− x)−(r+k).

Applying the generalized binomial theorem

(4.3) (1− z)α =
∞∑

n=0

(−α)n
n!

zn (|z| < 1)

to the last factor (1− x)−(r+k), we find

L =

∞∑
k=0

∞∑
n=0

(r)k(m)k(d+ 1)k
(2m+ 1)k (d)k

(−2)k (r + k)n
k! n!

xk+n.

Using identity (r)k(r + k)n = (r)k+n, this becomes

(4.4) L =

∞∑
k=0

∞∑
n=0

(m)k (d+ 1)k (r)k+n (−2)k

(2m+ 1)k (d)k k! n!
xk+n.

Now applying the double series manipulation (3.4) to the last resulting expres-
sion, we have

(4.5) L =
∞∑

n=0

n∑
k=0

(r)n (−2)k (m)k (d+ 1)k
(2m+ 1)k (d)k k! (n− k)!

xn.
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By employing the identity (3.5), we obtain

(4.6) L =
∞∑

n=0

(r)n
n!

xn
n∑

k=0

(−n)k (m)k (d+ 1)k 2k

(2m+ 1)k (d)k k!
.

Summing up the inner series, we get

L =

∞∑
n=0

(r)n
n!

xn
3F2

[−n,m, d+ 1

2m+ 1, d
; 2

]
.

Separating into even and odd powers of x, we have

(4.7)

L =
∞∑

n=0

(r)2n
(2n)!

x2n
3F2

[−2n,m, d+ 1

2m+ 1, d
; 2

]

+
∞∑

n=0

(r)2n+1

(2n+ 1)!
x2n+1

3F2

[−2n− 1,m, d+ 1

2m+ 1, d
; 2

]
.

Using (3.1) and (3.2), we find
(4.8)

L =
∞∑

n=0

(r)2n x2n

(2n)!
·

( 12 )n

(m+ 1
2 )n

+
∞∑

n=0

(r)2n+1

(2n+ 1)!
x2n+1 (1− 2m

d )

(2m+ 1)

( 32 )n

(m+ 3
2 )n

.

Making use of the identity

(4.9) (λ)2n = 22n
(
1

2
λ

)
n

(
1

2
λ+

1

2

)
n

(n ∈ N0)

in the involved factors, we readily obtain
(4.10)

L =
∞∑

n=0

( 12r)n(
1
2r +

1
2 )n

(m+ 1
2 )n n!

x2n +
xr(1− 2m

d )

(2m+ 1)

∞∑
n=0

( 12r +
1
2 )n(

1
2r + 1)n

(m+ 3
2 )n n!

x2n.

Summing up the series is easily seen to correspond with the right hand side of
(4.2). This completes the proof of Theorem 3. □

Remark 4. If we take d = 2m in (4.1), we get (1.12). Thus (4.1) may be
regarded as an extension of (1.12). Also, if we replace x by x

r and let r → ∞
in the resulting identity, we obtain the result (1.17) due to Rathie and Pogany
[29].

5. Reducibility of Kampé de Fériet function

Here we present an interesting result for the reducibility of Kampé de Fériet
function as in the following theorem.
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Theorem 4. The following identity holds true:

F
h : 2; 0

g : 2; 0

[
(H) : a, 1 + d;−;

(G) : 2a+ 1, d;−;
; x,−1

2
x

]

=2hF2g+1


(
1

2
H

)
,

(
1

2
H +

1

2

)
(
1

2
G

)
,

(
1

2
G+

1

2

)
, a+

1

2

; 22h−2g−4 x2



− (Hh)

(Gg)
·
x(1− 2a

d )

2(2a+ 1)
· 2hF2g+1


(
1

2
H + 1

)
,

(
1

2
H +

1

2

)
(
1

2
G+ 1

)
,

(
1

2
G+

1

2

)
, a+

3

2

; 22h−2g−4 x2

.
Proof. Let (Hh) denote the sequence of parameters (H1,H2, . . . , Hh) and for
nonnegative integer define the product of Pochhammer symbols ((Hh))n =
(H1)n(H2)n · · · (Hh)n, where an empty product (in case of h = 0) is to be
understood to be unity.

Denote the double series of the left hand side of the formula in Theorem 4
by S which is given by

(5.1) S =
∞∑

m=0

∞∑
n=0

((Hh))m+n (a)m(1 + d)m

((Gg))m+n (2a+ 1)m(d)m

xm
(
−1

2x
)n

m! n!

which is assumed to be absolutely convergent. Thus we have

(5.2) S =
∞∑

m=0

∞∑
n=0

((Hh))m+n (a)m(1 + d)m(−1)n

((Gg))m+n (2a+ 1)m(d)m 2n m! n!
xm+n.

By making use of a simple formal manipulation for double series (3.4), we find

(5.3) S =
∞∑

n=0

n∑
m=0

((Hh))n (a)m(1 + d)m
((Gg))n (2a+ 1)m(d)m

(−1)n−m

2n−m

xn

m! (n−m)!

which, upon using (3.5), after some simplification, yields

(5.4) S =
∞∑

n=0

((Hh))n (−1)nxn

((Gg))n 2
nn!

n∑
m=0

(−n)m(a)m(d+ 1)m2m

(2a+ 1)m(d)m
.

Summing up the inner series, we obtain

(5.5) S =
∞∑

n=0

((Hh))n (−1)nxn

((Gg))n 2
nn!

3F2

[−n, a, d+ 1

2a+ 1, d
; 2

]
.
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The double series defining S in the expression (5.2) may be identified with
a Kampé de Fériet function (see [11]) and so the last result becomes

F
h : 2; 0

g : 2; 0

[
(H) : a, 1 + d,−;

(G) : 2a+ 1, d;−;
x,−1

2
x

]

=
∞∑

n=0

((Hh))n (−1)nxn

((Gg))n 2
nn!

3F2

[−n, a, 1 + d

2a+ 1, d
; 2

]
.

Separating the last resulting identity into even and odd power of x and using
our new results (3.1) and (3.2), and using the identity (4.9), we have

(5.6)

F
h : 2; 0

g : 2; 0

[
(H) : a, 1 + d,−;

(G) : 2a+ 1, d;−;
x,−1

2
x

]

=
∞∑

n=0

(
(H2 )

)
n

(
(H2 + 1

2 )
)
n
22hn−2gn−4n(

(G2 )
)
n

(
(G2 + 1

2 )
)
n
(a+ 1

2 )nn!
x2n

− ((Hh))

((Gg))

x(1− 2a
d )

2(2a+ 1)

∞∑
n=0

(
(H2 + 1

2 )
)
n

(
(H2 + 1)

)
n
22hn−2ng−4n(

(G2 + 1
2 )
)
n

(
(G2 + 1)

)
n
(a+ 3

2 )n n!
x2n.

Finally, summing the series, we arrive at the right hand side of Theorem 4.
This completes the proof. □

Remark 5. It is interesting to mention here that the special case h = g = 0 in
Theorem 4 reduces to (1.17). The case d = 2a in Theorem 4 yields the identity
(1.19). The case h = g = 0 and d = 2a in Theorem 4 gives (1.7).
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[2] P. Appell and J. Kampé de Fériet, Functions hypérgeometiques et hypérspérique, Gau-
thier Villars, Paris, 1926.

[3] W. N. Bailey, Products of generalized hypergeometric series, Proc. London Math. Soc.
28 (1928), no. 2, 242–254.

[4] J. L. Burchnall and T. W. Chaundy, Expansions of Appell’s double hypergeometric
functions, Quart. J. Math. Oxford Ser. 11 (1940), 249–270.

[5] , Expansions of Appell’s double hypergeometric functions (II), Quart. J. Math.

Oxford Ser. 12 (1941), 112–128.
[6] R. G. Bushman and H. M. Srivastava, Some identities and reducibility of Kampé de
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