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APPELL’S FUNCTION F1 AND EXTON’S TRIPLE
HYPERGEOMETRIC FUNCTION X9

Junesang Choi a, ∗ and Arjun K. Rathie b

Abstract. In the theory of hypergeometric functions of one or several variables,
a remarkable amount of mathematicians’s concern has been given to develop their
transformation formulas and summation identities. Here we aim at presenting ex-
plicit expressions (in a single form) of the following weighted Appell’s function F1:

(1 + 2x)−a (1 + 2z)−b F1

(
c, a, b ; 2c + j ;

4x

1 + 2x
,

4z

1 + 2z

)
(j = 0, ±1, . . . , ±5)

in terms of Exton’s triple hypergeometric X9. The results are derived with the help
of generalizations of Kummer’s second theorem very recently provided by Kim et
al. A large number of very interesting special cases including Exton’s result are also
given.

1. Introduction and Preliminaries

The generalized hypergeometric series pFq is defined by (see [12, p. 73]):

(1.1)
pFq

[
α1, . . . , αp ;

β1, . . . , βq ;
z

]
=

∞∑

n=0

(α1)n · · · (αp)n

(β1)n · · · (βq)n

zn

n!

= pFq(α1, . . . , αp; β1, . . . , βq; z),

where (λ)ν denotes the Pochhammer symbol or the shifted factorial, since

(1)n = n! (n ∈ N0 := N ∪ {0}; N := {1, 2, 3, · · · }) ,

which is defined (for λ, ν ∈ C), in terms of the familiar Gamma function Γ, by

(1.2) (λ)ν :=
Γ(λ + ν)

Γ(λ)
=

{
1 (ν = 0; λ ∈ C \ {0})
λ(λ + 1) · · · (λ + n− 1) (ν = n ∈ N; λ ∈ C),

Received by the editors November 20, 2012. Accepted January 14, 2013.
2010 Mathematics Subject Classification. Primary 33C70, 33C065; Secondary 33C90, 33C05.
Key words and phrases. hypergeometric functions of several variables, multiple Gaussian hyper-

geometric series, Appell’s function F1, Exton’s triple hypergeometric function X9, Gauss’s hyper-
geometric functions, generalizations of Kummer’s second theorem.
∗Corresponding author.

c© 2013 Korean Soc. Math. Educ.

37



38 Junesang Choi & A. K. Rathie

it being understood conventionally that (0)0 := 1 and C the set of complex numbers.
Here p and q are positive integers or zero (interpreting an empty product as 1), and
we assume (for simplicity) that the variable z, the numerator parameters α1, . . . ,

αp, and the denominator parameters β1, . . . , βq take on complex values, provided
that no zeros appear in the denominator of (1.1), that is, that

(1.3) (βj ∈ C \ Z−0 ; j = 1, . . . , q),

where Z−0 denotes the set of nonpositive integers. Thus, if a numerator parameter
is a negative integer or zero, the pFq series terminates in view of the known identity
(see, for example, [15, p. 7]):

(1.4) (−n)k =





(−1)k n!
(n− k)!

(0 5 k 5 n; k, n ∈ N0) ,

0 (k > n).

The special case of (1.1) when p = 2 and q = 1 is usually called Gauss’s hypergeomet-
ric function or series. It should also be remarked here that whenever hypergeometric
and generalized hypergeometric functions reduce to express in terms of Gamma func-
tions, the results are very important from the applicative point of view. Therefore,
the classical summation theorems such as those of Gauss, Gauss’s second, Bailey
and Kummer for the series 2F1 and Dixon, Watson, Whipple and Saalschütz for the
series 3F2 and their rather recent extensions and generalizations (see [7], [8], [9], [10]
and [11]) play an important role in the theory of hypergeometric and generalized
hypergeometric series. For applications of the above-mentioned classical summation
theorems, we refer to [2], [5], [6], [10], [11], [12] and [13].

Moreover, it is well known that, the product of two hypergeometric series can
be expressed as a hypergeometric series with argument x, then the coefficient of xn

in the product must be expressible in terms of Gamma function. With this theory,
Bailey [2] obtained the following Kummer’s second theorem (see, for example, [12]):

(1.5) e−
x
2 1F1

[
α ;

2α ;
x

]
= 0F1

[ − ;

α + 1
2 ;

x2

16

]

by using Gauss’s second summation theorem. It is noted that Rathie and Choi [14]
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derived the result (1.5) by making use of Gauss’s summation theorem. Very recently
Kim et al. [5] generalized the Kummer’s second theorem to give explicit expressions
for

(1.6) e−
x
2 1F1

[
α ;

2α + j ;
x

]
(j = 0, ±1, . . . , ±5),

which will be given in Section 3.
On the other hand, just as Gauss function 2F1 was naturally extended to pFq by

increasing the number of parameters in the numerator as well as in the denominator
and the enormous success of the theory of hypergeometric series in single variable
has stimulated the development of a corresponding theory in two and more vari-
ables. Thus the four Appell functions in two variables were introduced. Here we are
interested in the following Appell function F1 (see [1]):
(1.7)

F1

(
a, b, b′ ; c ; x, y

)
=

∞∑

m=0

∞∑

n=0

(a)m+n (b)m (b′)n

(c)m+n

xm

m!
yn

n!
(max {|x|, |y|} < 1) .

For more details about these Appell functions and their generalization, we refer to
the extensive work by Srivastava and Karlsson [16]. Also, in the course of manipu-
lating certain integral representations of Lauricella functions of three variables and
Saran’s functions (see [16]), Exton [4] encountered a number of triple hypergeomet-
ric functions of the second order whose series representations involve such product
as (a)2m+2n+p and (a)2m+n+p. In fact, Exton [4] investigated the generalizations
of the Horn’s functions H3 and H4 and introduced a set of twenty triple hyperge-
ometric functions X1 to X20. In the same paper [4], Exton gave certain integral
representations of Laplace type for these functions together with some elementary
properties and some transformation and reduction formulas. Here, in this paper, we
are interested in the following triple hypergeometric function X9 defined by

(1.8)
X9 (a, b ; c ; x, y, z) =

∞∑

m=0

∞∑

n=0

∞∑

p=0

(a)2m+n (b)n+2p

(c)m+n+p

xm

m!
yn

n!
zp

p!
({
|x| < 1

4 , |z| < 1
4 , |y| < 1

2 + 1
2

√
(1− 4|x|)(1− 4|z|)

})
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and its Laplace type integral is given by

(1.9)

X9 (a, b ; c ; x, y, z)

=
1

Γ(a) Γ(b)

∫ ∞

0

∫ ∞

0
e−s−t sa−1 tb−1

0F1

[− ;

c ;
x s2 + y s t + z t2

]
ds dt.

This paper is organized as follows. In Section 3, we establish explicit expressions
(in a single form of general results) of (1.6) obtained earlier by Kim et al. [5] by
using a different method. In Section 4, we present explicit expressions (in a single
form of general results) of

(1 + 2x)−a (1 + 2z)−b F1

(
c, a, b ; 2c + j ;

4x

1 + 2x
,

4z

1 + 2z

)
(j = 0, ±1, . . . , ±5).

The results will be derived with the help of those given in Section 2. In Section 4,
we express a large number of Appell functions F1 in terms of Exton’s triple hyperge-
ometric function X9. The results easily established here are simple, interesting and
(potentially) useful.

2. Results Required

In our present investigation, we require the following results [5]:
(2.1)

2F1

[−2n, α ;

2α + j ;
2

]

= Aj(α, n)
Γ(α) Γ(1− α)

(
1
2

)
n

(
α +

[
j+1
2

])
n

Γ
(
α + j

2 + 1
2 |j|

)
Γ

(
1− α−

[
j+1
2

]) (
α + j

2

)
n

(
α + j

2 + 1
2

)
n

and
(2.2)

2F1

[−2n− 1, α ;

2α + j ;
2

]

=
Bj(α, n)
2α + j

Γ(−α) Γ(α + 1)
(

3
2

)
n

(
1 + α +

[
j
2

])
n

Γ
(
α + j

2 + 1
2 |j|

)
Γ

(
−α−

[
j
2

]) (
α + j

2 + 1
2

)
n

(
α + j

2 + 1
)

n

,

where n ∈ N0, j = 0, ±1, . . . , ±5, [x] is the greatest integer less than or equal to
x and its modulus is denoted by |x|, and the coefficients Aj(α, n) and Bj(α, n) are
given in the following table.
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TABLE

j Aj(α, n) Bj(α, n)
5 −4(1− α− 2n)2 + 2(1− α)(1− α− 2n) 4(α + 2n)2 − 2(1− α)(α + 2n)

+(1− α)2 + 22(1− α− 2n) +(1− α)2 + 34(α + 2n)
−13(1− α)− 20 +(1− α) + 62

4 2(α + 1 + 2n)(α + 3 + 2n)− α(α + 3) 4(α + 2n + 3)
3 −α− 4n− 2 −3α− 4n− 6
2 −α− 1− 2n −2
1 −1 1
0 1 0

−1 1 1
−2 1− α− 2n 2
−3 1− α− 4n 3− 3α− 4n
−4 2(1− 2α− n)(3− α− 2n)− (1− α)(4− α) 4(1− α− 2n)
−5 4(1− α− 2n)2 − 2(1− α)(1− α− 2n) 4(α + 2n)2 + 2(1− α)(α + 2n)

−(1− α)2 + 8(1− α− 2n) + 7α− 7 −(1− α)2 − 16(α + 2n) + α− 1

3. Generalizations of Kummer’s Second Theorem

In this section we establish the following generalizations of the Kummer’s second
theorem (1.5):

(3.1)

e−2x
1F1

[
c ;

2c + j ;
4x

]
=

Γ(c) Γ(1− c)

Γ
(
c + j

2 + 1
2 |j|

)
Γ

(
1− c−

[
j+1
2

])

·
∞∑

m=0

Aj(c,m)

(
c +

[
j+1
2

])
m

x2m

m!
(
c + j

2

)
m

(
c + j

2 + 1
2

)
m

− 2x

2c + j

Γ(−c) Γ(1 + c)

Γ
(
c + j

2 + 1
2 |j|

)
Γ

(
−c−

[
j
2

])

·
∞∑

m=0

Bj(c,m)

(
1 + c +

[
j
2

])
m

x2m

m!
(
c + j

2 + 1
2

)
m

(
c + j

2 + 1
)

m

,

where m ∈ N0, j = 0, ±1, . . . , ±5, [x] is the greatest integer less than or equal to
x and its modulus is denoted by |x|, and the coefficients Aj(c,m) and Bj(c,m) are
given by replacing α and n in the Table by c and m, respectively.
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Proof. Denoting the left-hand side of (3.1) by S and expressing both functions as
series, after a simplification, we have

S =
∞∑

m=0

∞∑

n=0

(−1)m (c)n 2m+2n xm+n

(2c + j)n m!n!
.

Using the following well known formal manipulation of double series (see [12, p. 56]
and [3, Eq. (1.4)]; for other ones, see also [3]):

(3.2)
∞∑

m=0

∞∑

n=0

A(n,m) =
∞∑

m=0

m∑

n=0

A(n,m− n),

after a little simplification, we obtain

S =
∞∑

m=0

m∑

n=0

(−1)m−n (c)n 2m+n xm

(2c + j)n (m− n)!n!
.

Using the result (1.4) for (m− n)!, after a little simplification, we get

S =
∞∑

m=0

(−2)m xm

m!

m∑

n=0

(−m)n (c)n

(2c + j)n

2n

n!
.

Expressing the inner series as in (1.1), we have

S =
∞∑

m=0

(−2)m xm

m! 2F1

[−m, c ;

2c + j ;
2

]
.

Now, separating the summation into even and odd powers of x and making use of
the following identities:

(2m)! = 22m

(
1
2

)

m

m! and (2m + 1)! = 22m

(
3
2

)

m

m!,

we obtain

S =
∞∑

m=0

x2m

(
1
2

)
m

m! 2F1

[−2m, c ;

2c + j ;
2

]

−2x
∞∑

m=0

x2m

(
3
2

)
m

m! 2F1

[−2m− 1, c ;

2c + j ;
2

]
.

Finally using the results (2.1) and (2.2), after a little simplification, we easily arrive
at the right-hand side of (3.1). This completes the proof of (3.1). ¤

Special Cases of (3.1). Here we illustrate some of the very interesting special
cases of (3.1) already-presented by Kim et al. [5] (in a slightly changed form) which
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will be used in the subsequent section:

(3.3) e−2x
1F1

[
c ;

2c ;
4x

]
= 0F1

[ − ;

c + 1
2 ;

x2

]
;

(3.4) e−2x
1F1

[
c ;

2c + 1 ;
4x

]
= 0F1

[ − ;

c + 1
2 ;

x2

]
− 2x

2c + 1 0F1

[ − ;

c + 3
2 ;

x2

]
;

(3.5) e−2x
1F1

[
c ;

2c− 1 ;
4x

]
= 0F1

[ − ;

c− 1
2 ;

x2

]
+

2x

2c− 1 0F1

[ − ;

c + 1
2 ;

x2

]
;

(3.6)

e−2x
1F1

[
c ;

2c + 2 ;
4x

]
=0F1

[ − ;

c + 3
2 ;

x2

]
− 2x

c + 1 0F1

[ − ;

c + 3
2 ;

x2

]

+
4x2

(c + 1)(2c + 3) 0F1

[ − ;

c + 5
2 ;

x2

]
;

(3.7)

e−2x
1F1

[
c ;

2c− 2 ;
4x

]
=0F1

[ − ;

c− 1
2 ;

x2

]
+

2x

c− 1 0F1

[ − ;

c− 1
2 ;

x2

]

+
4x2

(c− 1)(2c− 1) 0F1

[ − ;

c + 1
2 ;

x2

]
;

(3.8)

e−2x
1F1

[
c ;

2c + 3 ;
4x

]
= 0F1

[ − ;

c + 3
2 ;

x2

]
− 6x

2c + 3 0F1

[ − ;

c + 5
2 ;

x2

]

+
8x2

(c + 2)(2c + 3) 0F1

[ − ;

c + 5
2 ;

x2

]
− 16x3

(c + 2)(2c + 3)(2c + 5) 0F1

[ − ;

c + 7
2 ;

x2

]
;

(3.9)

e−2x
1F1

[
c ;

2c− 3 ;
4x

]
= 0F1

[ − ;

c− 3
2 ;

x2

]
+

6x

2c− 3 0F1

[ − ;

c− 1
2 ;

x2

]

+
8x2

(c− 1)(2c− 3) 0F1

[ − ;

c− 1
2 ;

x2

]
+

16x3

(c− 1)(2c− 1)(2c− 3) 0F1

[ − ;

c + 1
2 ;

x2

]
.

Remark 1. The identity (3.3) is the well known Kummer’s second theorem (see
(1.5)) and the results (3.4) to (3.9) are closely related to it.
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4. Main Result

The main result of this paper to be established is as follows:

(4.1)

(1 + 2x)−a (1 + 2z)−b F1

(
c, a, b ; 2c + j ;

4x

1 + 2x
,

4z

1 + 2z

)

=
1

Γ(a) Γ(b)

∫ ∞

0

∫ ∞

0
e−s−t sa−1 tb−1

{
Γ(c) Γ(1− c)

Γ
(
c + j

2 + 1
2 |j|

)
Γ

(
1− c−

[
j+1
2

])

·
∞∑

m=0

Aj(c,m)

(
c +

[
j+1
2

])
m

(xs + zt)2m

m!
(
c + j

2

)
m

(
c + j

2 + 1
2

)
m

− 2(xs + zt)
2c + j

Γ(−c) Γ(1 + c)

Γ
(
c + j

2 + 1
2 |j|

)
Γ

(
−c−

[
j
2

])

·
∞∑

m=0

Bj(c,m)

(
1 + c +

[
j
2

])
m

(xs + zt)2m

m!
(
c + j

2 + 1
2

)
m

(
c + j

2 + 1
)

m

}
ds dt,

where m ∈ N0, j = 0, ±1, . . . , ±5, [x] is the greatest integer less than or equal to
x and its modulus is denoted by |x|, and the coefficients Aj(c,m) and Bj(c,m) are
given by replacing α and n in the Table by c and m, respectively.

Proof. Denoting the left-hand side of (4.1) by L and expressing the Appell’s function
F1 as a series given in (1.7), after a little simplification, we have

L =
1

Γ(a) Γ(b)

∞∑

m=0

∞∑

n=0

(c)m+n 4m+n xm zn

(2c + j)m+n m! n!
Γ(m + a) Γ(n + b)

(1 + 2x)m+a (1 + 2z)n+b
.

Using the Euler’s Gamma function Γ(z) defined by

(4.2) Γ(z) :=
∫ ∞

0
e−t tz−1 dt (<(z) > 0),

we get ∫ ∞

0
e−ax xn−1 dx =

Γ(a)
an

.

Applying this formula to L, we obtain

L =
1

Γ(a) Γ(b)

∞∑

m=0

∞∑

n=0

(c)m+n 4m+n xm zn

(2c + j)m+n m!n!

·
∫ ∞

0

∫ ∞

0
e−s(1+2x)−t(1+2z) sm+a−1 tn+b−1 ds dt.
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Using (3.2) and changing the order of summation and integration, after a little
simplification, we get

L =
1

Γ(a) Γ(b)

∫ ∞

0

∫ ∞

0
e−s(1+2x)−t(1+2z) sa−1 tb−1

·
∞∑

m=0

m∑

n=0

(c)m 4m

(2c + j)m

(xs)m

(m− n)!n!

(
zt

xs

)n

ds dt.

Using the result (1.4) for (m− n)!, after a little simplification, we have

L =
1

Γ(a) Γ(b)

∫ ∞

0

∫ ∞

0
e−s(1+2x)−t(1+2z) sa−1 tb−1

·
∞∑

m=0

(c)m 4m

(2c + j)m m!
(xs)m

m∑

n=0

(− zt
xs

)n (−m)n

n!
ds dt.

Using binomial theorem for the inner sum, we obtain

L =
1

Γ(a) Γ(b)

∫ ∞

0

∫ ∞

0
e−s(1+2x)−t(1+2z) sa−1 tb−1

·
∞∑

m=0

(c)m 4m

(2c + j)m m!
(xs)m

(
1 +

zt

xs

)m

ds dt

=
1

Γ(a) Γ(b)

∫ ∞

0

∫ ∞

0
e−s−t sa−1 tb−1 e−2(xs+zt)

·
∞∑

m=0

(c)m

(2c + j)m

4m

m!
(xs + zt)m ds dt

Using the definition (1.1) for the inner sum, we get

L =
1

Γ(a) Γ(b)

∫ ∞

0

∫ ∞

0
e−s−t sa−1 tb−1 e−2(xs+zt)

1F1

[
c ;

2c + j ;
4(xs + zt)

]
ds dt.

Finally, the use of (3.1) for the 1F1 leads to the right-hand side of (4.1). This
completes the proof of (4.1). ¤

Special Cases of (4.1). Here we illustrate some of the very interesting special
cases of our main result (4.1) as follows:

(4.3)
(1 + 2x)−a (1 + 2z)−b F1

(
c, a, b ; 2c ;

4x

1 + 2x
,

4z

1 + 2z

)

= X9

(
a, b ; c +

1
2

; x2, 2xz, z2

)
;
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(4.4)

(1 + 2x)−a (1 + 2z)−b F1

(
c, a, b ; 2c + 1 ;

4x

1 + 2x
,

4z

1 + 2z

)

= X9

(
a, b ; c +

1
2

; x2, 2xz, z2

)
− 2ax

2c + 1
X9

(
a + 1, b ; c +

3
2

; x2, 2xz, z2

)

− 2bz

2c + 1
X9

(
a, b + 1 ; c +

3
2

; x2, 2xz, z2

)
;

(4.5)

(1 + 2x)−a (1 + 2z)−b F1

(
c, a, b ; 2c− 1 ;

4x

1 + 2x
,

4z

1 + 2z

)

= X9

(
a, b ; c− 1

2
; x2, 2xz, z2

)
+

2ax

2c− 1
X9

(
a + 1, b ; c +

1
2

; x2, 2xz, z2

)

+
2bz

2c− 1
X9

(
a, b + 1 ; c +

1
2

; x2, 2xz, z2

)
;

(4.6)

(1 + 2x)−a (1 + 2z)−b F1

(
c, a, b ; 2c + 2 ;

4x

1 + 2x
,

4z

1 + 2z

)

= X9

(
a, b ; c +

3
2

; x2, 2xz, z2

)
− 2ax

c + 1
X9

(
a + 1, b ; c +

3
2

; x2, 2xz, z2

)

− 2bz

c + 1
X9

(
a, b + 1 ; c +

3
2

; x2, 2xz, z2

)

+
4a(a + 1)x2

(c + 1)(2c + 3)
X9

(
a + 2, b ; c +

5
2

; x2, 2xz, z2

)

+
8abxz

(c + 1)(2c + 3)
X9

(
a + 1, b + 1 ; c +

5
2

; x2, 2xz, z2

)

+
4b(b + 1)z2

(c + 1)(2c + 3)
X9

(
a, b + 2 ; c +

5
2

; x2, 2xz, z2

)
;

(4.7)

(1 + 2x)−a (1 + 2z)−b F1

(
c, a, b ; 2c− 2 ;

4x

1 + 2x
,

4z

1 + 2z

)

= X9

(
a, b ; c− 1

2
; x2, 2xz, z2

)
+

2ax

c− 1
X9

(
a + 1, b ; c− 1

2
; x2, 2xz, z2

)

+
2bz

c− 1
X9

(
a, b + 1 ; c− 1

2
; x2, 2xz, z2

)
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+
4a(a + 1)x2

(c− 1)(2c− 1)
X9

(
a + 2, b ; c +

1
2

; x2, 2xz, z2

)

+
8abxz

(c− 1)(2c− 1)
X9

(
a + 1, b + 1 ; c +

1
2

; x2, 2xz, z2

)

+
4b(b + 1)z2

(c− 1)(2c− 1)
X9

(
a, b + 2 ; c +

1
2

; x2, 2xz, z2

)
;

(4.8)

(1 + 2x)−a (1 + 2z)−b F1

(
c, a, b ; 2c + 3 ;

4x

1 + 2x
,

4z

1 + 2z

)

= X9

(
a, b ; c +

3
2

; x2, 2xz, z2

)
− 6ax

2c + 3
X9

(
a + 1, b ; c +

5
2

; x2, 2xz, z2

)

− 6bz

2c + 3
X9

(
a, b + 1 ; c +

5
2

; x2, 2xz, z2

)

+
8a(a + 1)x2

(c + 2)(2c + 3)
X9

(
a + 2, b ; c +

5
2

; x2, 2xz, z2

)

+
16abxz

(c + 2)(2c + 3)
X9

(
a + 1, b + 1 ; c +

5
2

; x2, 2xz, z2

)

+
8b(b + 1)z2

(c + 2)(2c + 3)
X9

(
a, b + 2 ; c +

5
2

; x2, 2xz, z2

)
;

− 16a(a + 1)(a + 2)x3

(c + 1)(2c + 3)(2c + 5)
X9

(
a + 3, b ; c +

7
2

; x2, 2xz, z2

)

− 48ab(a + 1)x2z

(c + 1)(2c + 3)(2c + 5)
X9

(
a + 2, b + 1 ; c +

7
2

; x2, 2xz, z2

)

− 48ab(b + 1)xz2

(c + 1)(2c + 3)(2c + 5)
X9

(
a + 1, b + 2 ; c +

7
2

; x2, 2xz, z2

)

− 16b(b + 1)(b + 2)z3

(c + 1)(2c + 3)(2c + 5)
X9

(
a, b + 3 ; c +

7
2

; x2, 2xz, z2

)
;

(4.9)

(1 + 2x)−a (1 + 2z)−b F1

(
c, a, b ; 2c− 3 ;

4x

1 + 2x
,

4z

1 + 2z

)

= X9

(
a, b ; c− 3

2
; x2, 2xz, z2

)
+

6ax

2c− 3
X9

(
a + 1, b ; c− 1

2
; x2, 2xz, z2

)

+
6bz

2c− 3
X9

(
a, b + 1 ; c− 1

2
; x2, 2xz, z2

)
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+
8a(a + 1)x2

(c− 1)(2c− 3)
X9

(
a + 2, b ; c− 1

2
; x2, 2xz, z2

)

+
16abxz

(c− 1)(2c− 3)
X9

(
a + 1, b + 1 ; c− 1

2
; x2, 2xz, z2

)

+
8b(b + 1)z2

(c− 1)(2c− 3)
X9

(
a, b + 2 ; c− 1

2
; x2, 2xz, z2

)
;

+
16a(a + 1)(a + 2)x3

(c− 1)(2c− 1)(2c− 3)
X9

(
a + 3, b ; c +

1
2

; x2, 2xz, z2

)

+
48ab(a + 1)x2z

(c− 1)(2c− 1)(2c− 3)
X9

(
a + 2, b + 1 ; c +

1
2

; x2, 2xz, z2

)

+
48ab(b + 1)xz2

(c− 1)(2c− 1)(2c− 3)
X9

(
a + 1, b + 2 ; c +

1
2

; x2, 2xz, z2

)

+
16b(b + 1)(b + 2)z3

(c− 1)(2c− 1)(2c− 3)
X9

(
a, b + 2 ; c +

1
2

; x2, 2xz, z2

)
.

Proof. Here we choose to prove only (4.6). The same argument will establish the
other results. Setting j = 2 in (4.1), we have

T := (1 + 2x)−a (1 + 2z)−b F1

(
c, a, b ; 2c + 2 ;

4x

1 + 2x
,

4z

1 + 2z

)

=
1

Γ(a) Γ(b)

∫ ∞

0

∫ ∞

0
e−s−t sa−1 tb−1 e−2(xs+zt)

1F1

[
c ;

2c + 2 ;
4(xs + zt)

]
ds dt.

Using (3.6) for the 1F1, we obtain

T =
1

Γ(a) Γ(b)

∫ ∞

0

∫ ∞

0
e−s−t sa−1 tb−1

{
0F1

[ − ;

c + 3
2 ;

(xs + zt)2
]

− 2(xs + zt)
c + 1 0F1

[ − ;

c + 3
2 ;

(xs + zt)2
]

+
4(xs + zt)2

(c + 1)(2c + 3) 0F1

[ − ;

c + 5
2 ;

(xs + zt)2
]}

ds dt.

Now, separating the integral into six integrals and interpreting each of those integrals
in terms of X9 in (1.9), we easily arrive at the right-hand side of (4.6). This completes
the proof of (4.6). ¤

Remark 2. The result (4.3) is a known identity due to Exton [4] and the identities
(4.4) to (4.9) are closely related to it. We conclude by noting that if set z = x in
(4.3) to (4.9), we also get seven (presumably new) interesting identities.
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