Browse > Article
http://dx.doi.org/10.4134/BKMS.2012.49.3.621

TWO RESULTS FOR THE TERMINATING 3F2(2) WITH APPLICATIONS  

Kim, Yong-Sup (Department of Mathematics Wonkwang University)
Choi, June-Sang (Department of Mathematics Dongguk University)
Rathie, Arjun K. (Centre for Mathematical Science Pala campus Arunapuram)
Publication Information
Bulletin of the Korean Mathematical Society / v.49, no.3, 2012 , pp. 621-633 More about this Journal
Abstract
By establishing a new summation formula for the series $_3F_2(\frac{1}{2})$, recently Rathie and Pogany have obtained an interesting result known as Kummer type II transformation for the generalized hypergeometric function $_2F_2$. Here we aim at deriving their result by using a very elementary method and presenting two elegant results for certain terminating series $_3F_2(2)$. Furthermore two interesting applications of our new results are demonstrated.
Keywords
generalized hypergeometric series; Gauss's summation theorem; Gauss's second theorem; Kummer's first and second theorems; quadratic transformation; Kummer type I and II transformations; Kamp$\acute{e}$ de F$\acute{e}$riet function;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
1 A. K. Rathie and R. B. Paris, An extension of the Euler type transformation for the $_{3}F_{2}$ series, Far East J. Math. Sci. 27 (2007), no. 1, 43-48.
2 A. K. Rathie and T. Pogany, New summation formula for $_-3}F_-2}(\frac-1}-2})$ and a Kummer type II transformation of $_-2}F_-2}$(x), Math. Commun. 13 (2008), no. 1, 63-66.
3 H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1985.
4 H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1984.
5 H. M. Srivastava and R. Panda, An integral representation for the product of two Jacobi polynomials, J. London Math. Soc. (2) 12 (1975/76), no. 4, 419-425.   DOI
6 R. Videnas, A generalization of Kummer's identity, Rocky Mountain J. Math. 32 (2002), no. 2, 919-936.   DOI   ScienceOn
7 E. E. Kummer, Collected Papers, Vol. 2, Springer Verlag, Berlin, 1975.
8 J. L. Lavoie, F. Grondin, A. K. Rathie, and K. Arora, Generalizations of Dixon's theorem on the sum of $_{3}F_{2}$, Math. Comp. 62 (1994), no. 205, 267-276.
9 J. L. Lavoie, F. Grondin, and A. K. Rathie, Generalizations of Watson's theorem on the sum of $_{3}F_{2}$, Indian J. Math. 34 (1992), no. 1, 23-32.
10 J. L. Lavoie, F. Grondin, and A. K. Rathie, Generalizations of Whipple's theorem on the sum of $_{3}F_{2}$, J. Comput. Appl. Math. 72 (1996), no. 2, 293-300.   DOI   ScienceOn
11 S. Lewanowicz, Generalized Watson's summation formula for $_{3}F_{2}$(1), J. Comput. Appl. Math. 86 (1997), no. 2, 375-386.   DOI   ScienceOn
12 M. Milgram, On hypergeometric $_{3}F_{2}$(1), Arxiv. Math. CA/0603096 (2006).
13 R. P. Paris, A Kummer type transformation for a $_{2}F_{2}$ hypergeometric function, J. Comput. Appl. Math. 173 (2005), no. 2, 379-382.   DOI   ScienceOn
14 E. D. Rainville, Special Functions, The Macmillan company, New York, 1960.
15 M. A. Rakha and A. K. Rathie, Generalizations of classical summation theorems for the series $_{2}F_{1}$ and $_{3}F_{2}$ with applications, Integral Transforms and Special Functions (2011), to appear.
16 A. K. Rathie and J. Choi, Another proof of Kummer's second theorem, Commun. Korean Math. Soc. 13 (1998), no. 4, 933-936.
17 A. K. Rathie and V. Nargar, On Kummer's second theorem involving product of gener- alized hypergeometric series, Matematiche (Catania) 50 (1995), no. 1, 35-38.
18 A. K. Rathie and U. Pandey, Another method for a quadratic transformation formula due to Kummer, Proc. National Conference PAMET (2010), 1-5.
19 R. G. Bushman and H. M. Srivastava, Some identities and reducibility of Kampe de Feriet functions, Math. Proc. Cambridge Philos. Soc. 91 (1982), 435-440.   DOI
20 J. L. Burchnall and T. W. Chaundy, Expansions of Appell's double hypergeometric functions (II), Quart. J. Math. Oxford Ser. 12 (1941), 112-128.   DOI
21 J. Choi, A. K. Rathie, and H. Harsh, A note on Reed Dawson identities, Korean J. Math. Sci. 11 (2004), no. 2, 1-4.
22 H. Exton, Multiple Hypergeometric Functions, Ellis Horwood, Chichester, U. K., 1976.
23 H. Exton, On the reducibility of the Kampe de Feriet function, J. Comput. Appl. Math. 83 (1997), no. 1, 119-121.   DOI   ScienceOn
24 P. W. Karlsson, Some reduction formulas for power series and Kampe de Feriet functions, Proc. A. Kon. Nedel. Akad. Weten. 87 (1984), 31-36.
25 Y. S. Kim, On certain reducibility of Kampe de Feriet functions, Honam Math. J. 31 (2009), no. 2, 167-176.   DOI   ScienceOn
26 Y. S. Kim, M. A. Rakha, and A. K. Rathie, Extensions of certain classical summation theorems for the series $_{2}F_{1}$ and $_{3}F_{2}$ with applications in Ramanujan's summations, Int. J. Math. Math. Sci. 2010 (2010), Art. ID 309503, 26 pp.
27 Y. S. Kim, M. A. Rakha, and A. K. Rathie, Generalizations of Kummer's second theorem with applications, Comput. Math. Math. Phys. 50 (2010), no. 3, 387-402.   DOI
28 E. D. Krupnikov, A register of computer oriented reduction of identities for Kampe de Feriet functions, Novosibirsk, Russia, 1996.
29 G. E. Andrews, Applications of basic hypergeometric functions, SIAM Rev. 16 (1974), no. 4, 441-484.   DOI   ScienceOn
30 E. E. Kummer, Uber die hypergeometrische Reihe $1+\frac{\alpha{\cdot}\beta}{1{\cdot}\gamma}x+\frac{\alpha(\alpha+1)\beta(\beta+1)}{1{\cdot}2{\gamma}{\cdot}(\gamma+1)}x^{2}+{\cdots}$ , J. Reine Angew Math. 15 (1836), 39-83; 127-172.
31 P. Appell and J. Kampe de Feriet, Functions hypergeometiques et hypersperique, Gauthier Villars, Paris, 1926.
32 J. L. Burchnall and T. W. Chaundy, Expansions of Appell's double hypergeometric functions, Quart. J. Math. Oxford Ser. 11 (1940), 249-270.   DOI
33 W. N. Bailey, Products of generalized hypergeometric series, Proc. London Math. Soc. 28 (1928), no. 2, 242-254.   DOI