• Title/Summary/Keyword: Gate Voltage Control

Search Result 272, Processing Time 0.029 seconds

Design on Optimum Control of Subthreshold Current for Double Gate MOSFET (DGMOSFET에서 최적의 서브문턱전류제어를 위한 설계)

  • Jung, Hak-Kee;Na, Young-Il;Lee, Jong-In
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.887-890
    • /
    • 2005
  • The double gate(DG) MOSFET is a promising candidate to further extend the CMOS scaling and provide better control of short channel effect(SCE). DGMOSFETs, having ultra thin updoped Si channel for SCEs control, are being validated for sub-20nm scaling, A channel effects such as the subthreshold swing(SS), and the threshold voltage roll-off(${\Delta}V_{th}$). The propsed model includes the effects of thermionic emission and quantum tunneling of carriers through the source-drain barrier. The proposed model is used to design contours for gate length, channel thickness, and gate oxide thickness.

  • PDF

Theoretical and Experimental Analysis of Back-Gated SOI MOSFETs and Back-Floating NVRAMs

  • Avci, Uygar;Kumar, Arvind;Tiwari, Sandip
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.1
    • /
    • pp.18-26
    • /
    • 2004
  • Back-gated silicon-on-insulator MOSFET -a threshold-voltage adjustable device-employs a constant back-gate potential to terminate source-drain electric fields and to provide carrier confinement in the channel. This suppresses shortchannel effects of nano-scale and of high drain biases, while allowing a means to threshold voltage control. We report here a theoretical analysis of this geometry to identify its natural length scales, and correlate the theoretical results with experimental device measurements. We also analyze experimental electrical characteristics for misaligned back-gate geometries to evaluate the influence on transport behavior from the device electrostatics due to the structure and position of the back-gate. The backgate structure also operates as a floating-gate nonvolatile memory (NVRAM) when the back-gate is floating. We summarize experimental and theoretical results that show the nano-scale scaling advantages of this structure over the traditional front floating-gate NVRAM.

Conduction Path Dependent Threshold Voltage for the Ratio of Top and Bottom Oxide Thickness of Asymmetric Double Gate MOSFET (비대칭 이중게이트 MOSFET의 상하단 산화막 두께비에 따른 전도중심에 대한 문턱전압 의존성)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.11
    • /
    • pp.2709-2714
    • /
    • 2014
  • This paper has analyzed the change of threshold voltage and conduction path for the ratio of top and bottom gate oxide thickness of asymmetric double gate MOSFET. The asymmetric double gate MOSFET has the advantage that the factor to be able to control the current in the subthreshold region increases. The analytical potential distribution is derived from Poisson's equation to analyze the threshold voltage and conduction path for the ratio of top and bottom gate oxide thickness. The Gaussian distribution function is used as charge distribution. This analytical potential distribution is used to derive off-current and subthreshold swing. By observing the results of threshold voltage and conduction path with parameters of bottom gate voltage, channel length and thickness, projected range and standard projected deviation, the threshold voltage greatly changed for the ratio of top and bottom gate oxide thickness. The threshold voltage changed for the ratio of channel length and thickness, not the absolute values of those, and it increased when conduction path moved toward top gate. The threshold voltage and conduction path changed more greatly for projected range than standard projected deviation.

A study on characteristics of three phase induction motor with stator voltage control by symmetrically triggered triacs (Triac을 이용한 삼상유도전동기의 일차전압평형제어에 따른 특성 연구)

  • 노창주;유춘식;정경열
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.72-84
    • /
    • 1984
  • In this paper, the characteristics relating to the stator voltage control of a small three phase squirrel cage induction motor by means of symmetrically trggered triacs instead of antiparallel SCR's is described. A complete model of the system with 220V, $3{\phi}$, 1HP motor and triac gate control circuit has been designed and tested in the laboratory, and the experimental results are compared with the numerical values. As a result of the above investigation, it is found that the range of induction motor speed control by stator voltage control is narrow.

  • PDF

A study on the construction of nic circuit and ists application to oscilation circuit (Nic 회로의 구성 및 발진회로에의 응용에 관한 연구)

  • 김명기
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.11 no.6
    • /
    • pp.16-24
    • /
    • 1974
  • In this paper the method of constructing short and open stable voltage inversion negative immittance converter (VNIC) circuits is proposed according to simplified equivalent models witch consist of a parameter control circuit, and a voltage or a current control circuit. VNIC characteristics can be obtained as gate voltage of common gate connection is controlled by the output of the parameter control circuit corresponding to its input. Constructed circuits are analysed, and the experimental results are compared and cheeked with the calculated results. Errors are found less than 11%. Oscillation behavior of constructed VNIC oscillator is compared with that of negative resistance oscillator.

  • PDF

Modeling of 18-Pulse STATCOM for Power System Applications

  • Singh, Bhim;Saha, R.
    • Journal of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.146-158
    • /
    • 2007
  • A multi-pulse GTO based voltage source converter (VSC) topology together with a fundamental frequency switching mode of gate control is a mature technology being widely used in static synchronous compensators (STATCOMs). The present practice in utility/industry is to employ a high number of pulses in the STATCOM, preferably a 48-pulse along with matching components of magnetics for dynamic reactive power compensation, voltage regulation, etc. in electrical networks. With an increase in the pulse order, need of power electronic devices and inter-facing magnetic apparatus increases multi-fold to achieve a desired operating performance. In this paper, a competitive topology with a fewer number of devices and reduced magnetics is evolved to develop an 18-pulse, 2-level $\pm$ 100MVAR STATCOM in which a GTO-VSC device is operated at fundamental frequency switching gate control. The inter-facing magnetics topology is conceptualized in two stages and with this harmonics distortion in the network is minimized to permissible IEEE-519 standard limits. This compensator is modeled, designed and simulated by a SimPowerSystems tool box in MATLAB platform and is tested for voltage regulation and power factor correction in power systems. The operating characteristics corresponding to steady state and dynamic operating conditions show an acceptable performance.

A Continuous Regional Current-Voltage Model for Short-channel Double-gate MOSFETs

  • Zhu, Zhaomin;Yan, Dawei;Xu, Guoqing;Peng, Yong;Gu, Xiaofeng
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.3
    • /
    • pp.237-244
    • /
    • 2013
  • A continuous, explicit drain-current equation for short-channel double-gate (DG) MOSFETs has been derived based on the explicit surface potential equation. The model is physically derived from Poisson's equation in each region of operation and adopted in the unified regional approach. The proposed model has been verified with numerical solutions, physically scalable with channel length and gate/oxide materials as well as oxide/channel thicknesses.

Fabrication and Characteristic Analysis of Single Poly-Si flash EEPROM (단일층 다결정 실리콘 Flash EEPROM 소자의 제작과 특성 분석)

  • Kwon Young-Jun;Jung Jung-Min;Park Keun-Hyung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.7
    • /
    • pp.601-604
    • /
    • 2006
  • In this paper, we propose the single poly-Si Flash EEPROM device with a new structure which does not need the high voltage switching circuits. The device was designed, fabricated and characterized. From the measurement results, it was found that the program, the erase and the read operations worked properly. The threshold voltage was 3.1 V after the program in which the control gate and the drain were biased with 12 V and 7 V for $100{\mu}S$, respectively. And it was 0.4 V after the erase in which the control gate was grounded and the drain were biased with 11 V for $200{\mu}S$. On the other hand, it was found that the program and the erase speeds were significantly dependent on the capacitive coupling ratio between the control gate and the floating gate. The larger the capacitive coupling ratio, the higher the speeds, but the target the area per cell. The optimum structure of the cell should be chosen with the consideration of the trade-offs.

Highly Reliable Trench Gate MOSFET using Hydrogen Annealing (수소 열처리를 이용한 고신뢰성 트렌치 게이트 MOSFET)

  • 김상기;노태문;박일용;이대우;양일석;구진근;김종대
    • Journal of the Korean Vacuum Society
    • /
    • v.11 no.4
    • /
    • pp.212-217
    • /
    • 2002
  • A new technique for highly controllable trench corner rounding at the top and bottom of the trench using pull-back and hydrogen annealing has been developed and investigated. The pull-back process could control the trench corner rounding radius at the top comers of the trench. The silicon migration generated by hydrogen annealing at the trench coiners provided (111) and (311) crystal planes and gave a uniform gate-oxide thickness, resulting in high reliable trench DMOSFETs with highly breakdown voltages and low leakage currents. The breakdown voltage of a trench DMOSFET fabricated using hydrogen annealing was increased by 25% compared with a conventional DMOSFET. The reasonable drain current of 45.3 A was obtained when a gate voltage of 10 V was supplied. The on-resistance of the trench gate DMOSFET fabricated using the trench cell of 45,000 was about 55 m(at a gate voltage of 10 V under a drain current of 5 A.

Suppression Techniques of Subthreshold Hump Effect for High-Voltage MOSFET

  • Baek, Ki-Ju;Na, Kee-Yeol;Park, Jeong-Hyeon;Kim, Yeong-Seuk
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.5
    • /
    • pp.522-529
    • /
    • 2013
  • In this paper, simple but very effective techniques to suppress subthreshold hump effect for high-voltage (HV) complementary metal-oxide-semiconductor (CMOS) technology are presented. Two methods are proposed to suppress subthreshold hump effect using a simple layout modification approach. First, the uniform gate oxide method is based on the concept of an H-shaped gate layout design. Second, the gate work function control method is accomplished by local ion implantation. For our experiments, $0.18{\mu}m$ 20 V class HV CMOS technology is applied for HV MOSFETs fabrication. From the measurements, both proposed methods are very effective for elimination of the inverse narrow width effect (INWE) as well as the subthreshold hump.