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Abstract—A continuous, explicit drain-current 

equation for short-channel double-gate (DG) 

MOSFETs has been derived based on the explicit 

surface potential equation. The model is physically 

derived from Poisson’s equation in each region of 

operation and adopted in the unified regional 

approach. The proposed model has been verified with 

numerical solutions, physically scalable with channel 

length and gate/oxide materials as well as 

oxide/channel thicknesses.     

 

Index Terms—Double-gate MOSFETs, short channel, 

surface potential 

I. INTRODUCTION 

With the aggressive scaling of CMOS, future 

technology scaling will require novel device structures. 

Multiple-gate (MG) structures such as planar double-gate 

(DG) MOSFETs, vertical FinFETs, nanowire 

surrounding gate, and various 3D geometries [1] have 

been demonstrated. MG MOSFETs exhibit large inherent 

immunity to short-channel effects, sharper subthreshold 

slope, and higher drive current [2]. Intense efforts have 

been devoted to the development of compact models for 

DG-MOSFETs in the literature [3, 4]. Theoretical 

analysis of double-gate (DG) transistors dates back to 

1967 [5], about the same time as bulk MOSFET models. 

Since 1980’s many alternatives to the conventional bulk-

silicon MOSFET have been proposed and developed, 

such as the silicon-on-insulator (SOI) and double-gate 

MOSFETs [6-10]. Theoretically, this type of “generic” 

MOSFETs has a different boundary condition from bulk 

MOSFET due to the back-gate oxide. When the back-

gate oxide thickness approaches that of the front gate, 

SOI conceptually becomes DG. Recently, there has been 

intense research interest in the development of compact 

models for SOI/DG MOSFETs [11-15]. Most of the 

models are integrable ones [7, 11, 13]; some are iterative 

[11, 15] and others are explicit [13, 14]. Undoped 

s-DG/a-DG MOSFETs were analyzed by Taur [11]. 

Ortiz-Conde et al. presented an approximate solution to 

the undoped s-DG surface potential [13] in comparison 

with the iterative one, and an implicit solution by 

numerical iteration [15] for generic doped MOSFETs 

with two gates. Undoped s-DG MOSFETs have been 

solved both implicitly [16-18] and analytically [18-20], 

while undoped asymmetric cases have only been solved 

implicitly in literature [11]. Subthreshold characteristics 

in short channel double-gate MOSFETs has also been 

solved analytically [26]. 

In this paper, we present a continuous, explicit drain-

current equation for short-channel double-gate (DG) 

MOSFETs based on the explicit surface potential 

equation, physically scalable with independent applied 

gate biases and oxide/channel thickness variations. 

Explicit regional solutions are derived for the first time 

for DG and the unified regional solution shows an error 

in the mili-volts range with respect to the numerical 

solutions. 
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II. ANALYTICAL LONG-CHANNEL CURRENT-

VOLTAGE SOLUTION 

For long channel double-gate MOSFETs as shown in 

Fig. 1, the drain-current equation can be extracted from 

the Pao-Sah’s integral, which is expressed as 
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where ID is drain current, W is gate width, L is gate 

length, u is mobility and Qi(V) is inversion charge in the 

channel. Qi(V) can be express by the Gauss’s law 
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where φ represents potential. After substituting (2) into 

(1) with boundary conditions, we get 
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where Vg is gate voltage, tox is gate oxide thickness, and 

ϕs is surface potential. After solving (3), a continuous, 

explicit drain-current equation is reached [21, 22]: 
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where gf g iV V φ= −∆ . εox and εsi are dielectric constant 

of oxide and silicon, respectively. q is the electron charge. 

ni is the intrinsic carrier density. φs can be got 

approximately from the following expressions [23]: 
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where L+{w} is the Lambert W function [24] (principal 

branch), and 
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where δ is a smoothing parameter [25], which is set as a 

constant 0.001 (which can be tuned for smoothness). 

For symmetric case, we define the saturation voltage 

Vdsat at the point 1( )sub str Vϕ ϕ δ= − , where δ1 is a fitting 

parameter. Then we get 
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The subthreshold current is extracted by setting Vgf=φs 

in Eq. (6), 
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III. ANALYTICAL SHORT-CHANNEL CURRENT-

VOLTAGE SOLUTION 

For short channel case, the drain-current equation can 

be expressed by [26] 
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Because ( )i i s
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= −  [27], where 
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Fig. 1. Schematic of a symmetric DG n-MOSFET. 
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ssϕ and dsϕ  are the surface potential at source side and 

drain side, respectively. 
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Considering velocity saturation effect, µeff can be 

expressed by 
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where 
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v
E
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= , sµ  is constant mobility. 

Qi(y) can be extracted from Gauss’ law, 
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In the linear region (VDS<Vdsat), y CE E<< , so after 

substituting (13) into (11) we get 
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where 
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where η is a fitting parameter, and 

 

 

2

2

( )1
'( ) sd y

E y
dy

ϕ

η
=−     (18) 

 

From Eq. (13), we can get 
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When in the volume inversion region (subthreshold 

region VG<VT), the inversion charge in the channel can 

be neglected. So 
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When in the strong inversion region (VG<VT), the 

inversion charge in the channel can be approximated by 
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Let’s set 
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After solving (21), we can get 
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Then 
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Meanwhile, 
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Now we can get ID2 after substituting (23) into (16) 
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Finally we can get ID1 after substituting (24) and (26) 

into (16), accordingly ID after substituting (15) into (10). 

In the saturation region, the gradual channel 

approximation (GCA) will not be valid near drain side. 

So we divide the channel into two regions. In the region 

(0<y≤L-∆L) GCA still applies, but in the region L-

∆L≤y<L we need to consider the effects of both vertical 

and lateral electrical fields. 

Considering channel length modulation effect, 
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where ∆L is width of non-GCA region, which can be 

extracted as follows.  

After we apply Gauss’ law to the ABCD box in Fig. 2 

(see Fig. 3), we can get the charge in the velocity 

saturation region (QVS) 
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Fig. 2. Schematic of a short-channel symmetric DG n-

MOSFET. 
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Fig. 3. Velocity saturation region of a short-channel 

symmetric DG n-MOSFET. 
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Substituting (29) into (28), we can get (for symmetric 

undoped double-gate MOSFETs), 
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When y=0, according to gradual channel 

approximation, 
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In the ABCD box (velocity saturation region), 
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Then we can get '( )yE y  by Eq. (30) and (31), 

 

 '( ) 2 ( ( ) )ox
y dsat

Si Si ox

E y V y V
t t

ε

ε
= −  (33) 

 

The solution of the above equation is, 
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When y=∆L, 
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IV. RESULTS AND DISCUSSION 

In this section, results of the explicit solutions are 

compared with the numerical solutions for various 

operating conditions. Fig. 4 demonstrates Id-Vg curves 

when channel length is 1µm (long channel case). Fig. 5 

plots Id-Vg curves when channel length is 0.1 µm (short 

channel case). Fig. 6 gives the comparison of the explicit, 

analytical drain current-drain voltage output 

characteristics and that from MEDICI results when 

channel length is 1 µm (long channel case). Fig. 7 

compares the drain current-drain voltage output 

 

0.0 0.5 1.0 1.5 2.0

-0.0005

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

  Numerical results

 our model

V
ds
=1V

D
ra
in
 C
u
rr
e
n
t 
(A
)

Gate Voltage (V)

V
ds
=0.1V

 

Fig. 4. Id-Vg curves for long-channel undoped double-gate 

MOSFETs. Symbols are from numerical results and line is 

from our model. Oxide thickness is 3 nm and channel thickness 

is 30 nm. Channel length is 1 um. 
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Fig. 5. Id-Vg curves for short-channel undoped double-gate 

MOSFETs. Symbols are from numerical results and line is 

from our model. Oxide thickness is 3 nm and channel thickness 

is 30 nm. Channel length is 100 nm. 
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characteristics as calculated analytically with that from 

MEIDI results when channel length is 100 nm (short 

channel case), for four values of gate voltages. While we 

built our model, some fitting parameters are introduced 

for simplification and approximation of complicated 

equations, which otherwise cannot be solved analytically. 

The existence of the fitting parameters will produce some 

difference between MEDICI and our model. In general 

our model agrees very well with the simulated results. 

Fig. 8 gives the comparison of drain conductance (gd) 

between our model and simulated results. 

 

V. CONCLUSIONS 

An explicit unified regional short-channel drain 

current-drain voltage model has been derived for 

undoped symmetric double-gate. The Vdsat equation of 

undoped DG MOSFET has also been derived. The 

scalability of the model for different channel length and 

oxide thicknesses has been verified with the numerical 

solutions. The explicit solution is not only 

computationally efficient, more importantly, it is also 

easier to evaluate in compact drain-current formulations. 

The model has shown good accuracy compared with 

MEDICI result. 
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