• Title/Summary/Keyword: Gate Voltage

Search Result 1,746, Processing Time 0.021 seconds

A Study Comparison and Analysis of Electrical Characteristics of IGBTs with Variety Gate Structures (다양한 게이트 구조에 따른 IGBT 소자의 전기적 특성 비교 분석 연구)

  • Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.11
    • /
    • pp.681-684
    • /
    • 2016
  • This research was carried out experiments of variety IGBTs for industrial inverter and electric vehicle. The devices for this paper were planar gate IGBT, trench gate IGBT and dual gate IGBT and we designed using same design and process parameters. As a result of experiments, the electrical characteristics of planar gate IGBT were 1,459 V of breakdown voltage, 4.04 V of threshold voltage and 4.7 V of on-state voltage drop. And the electrical characteristics of trench gate IGBT were 1,473 V of breakdown voltage, 4.11 V of threshold voltage and 3.17 V of on-state voltage drop. Lastly, the electrical characteristics of dual gate IGBT were 1,467 V of breakdown voltage, 4.14 V of threshold voltage and 3.08V of on-state voltage drop. We almost knew that the trench gate IGBT was superior to dual gate IGBT in terms of breakdown voltage. On the other hand, the dual gate IGBT was better than the trench gate IGBT in terms of on state voltage drop.

Temperature-dependent characteristics of Current-Voltage for Double Gate MOSFET (동작 온도에 따른 Double Gate MOSFET의 전류-전압특성)

  • 김영동;고석웅;정학기
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.693-695
    • /
    • 2003
  • In this paper, we have investigated temperature-dependent characteristics of current-voltage for double gate MOSFET with main gate and side gate. DG MOSFET has the main gate length of 50nm and the side gate length of 70nm. We have investigated the temperature-dependent characteristics of current-voltage and drain voltage is changed from 0V to 5.0V at $V_{mg}$ =1.5V and $V_{sg}$ =3.0V. We have obtained a very good characteristics of current-voltage for 77K. We have simulated using ISE-TCAD tool for characteristics analysis of device.

  • PDF

Effects of Offset Gate on Programing Characteristics of Triple Polysilicon Flash EEPROM Cell

  • Kim, Nam-Soo;Choe, Yeon-Wook;Kim, Yeong-Seuk
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.3
    • /
    • pp.132-138
    • /
    • 1997
  • Electrical characteristics of split-gate flash EEPROM with triple polysilicon is investigated in terms of effects of floating gate and offset gate. In order to search for t the effects of offset gate on programming characteristics, threshold voltage and drain current are studied with variation of control gate voltage. The programming process is believed to depend on vertical and horizontal electric field as well as offset gate length. The erase and program threshold voltage are found to be almost constant with variation of control gate voltage above 12V, while endurance test indicates degradation of program threshold voltage. With increase of offset gate length, program threshold voltage becomes smaller and the drain source voltage just after program under constant control gate voltage becomes higher.

  • PDF

Bottom Gate Voltage Dependent Threshold Voltage Roll-off of Asymmetric Double Gate MOSFET (하단게이트 전압에 따른 비대칭 이중게이트 MOSFET의 문턱전압이동 의존성)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.6
    • /
    • pp.1422-1428
    • /
    • 2014
  • This paper has analyzed threshold voltage roll-off for bottom gate voltages of asymmetric double gate(DG) MOSFET. Since the asymmetric DGMOSFET is four terminal device to be able to separately bias for top and bottom gates, the bottom gate voltage influences on threshold voltage. It is, therefore, investigated how the threshold voltage roll-off known as short channel effects is reduced with bottom gate voltage. In the pursuit of this purpose, off-current model is presented in the subthreshold region, and the threshold voltage roll-off is observed for channel length and thickness with a parameter of bottom gate voltage as threshold voltage is defined by top gate voltage that off-currnt is $10^{-7}A/{\mu}m$ per channel width. As a result to observe the threshold voltage roll-off for bottom gate voltage using this model, we know the bottom gate voltage greatly influences on threshold voltage roll-off voltages, especially in the region of short channel length and thickness.

Threshold Voltage Roll-off for Bottom Gate Voltage of Asymmetric Double Gate MOSFET (비대칭 이중게이트 MOSFET의 하단게이트 전압에 따른 문턱전압이동현상)

  • Jung, Hakkee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.741-744
    • /
    • 2014
  • This paper has analyzed threshold voltage roll-off for bottom gate voltages of asymmetric double gate(DG) MOSFET. Since the asymmetric DGMOSFET is four terminal device to be able to separately bias for top and bottom gates, the bottom gate voltage influences on threshold voltage. It is, therefore, investigated how the threshold voltage roll-off known as short channel effects is reduced with bottom gate voltage. In the pursuit of this purpose, off-current model is presented in the subthreshold region, and the threshold voltage roll-off is observed for channel length and thickness with a parameter of bottom gate voltage as threshold voltage is defined by top gate voltage that off-currnt is $10^{-7}A/{\mu}m$ per channel width. As a result to observe the threshold voltage roll-off for bottom gate voltage using this model, we know the bottom gate voltage greatly influences on threshold voltage roll-off voltages, especially in the region of short channel length and thickness.

  • PDF

A Study of The Voltage Transfer Function Dependent On Input Conditions For An N-Input NAND Gate (N-Input NAND Gate에서 입력조건에 따른 Voltage Transfer Function에 관한 연구)

  • Kim In-Mo;Song Sang-Hun;Kim Soo-Won
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.10
    • /
    • pp.510-514
    • /
    • 2004
  • In this paper, we analytically examine the voltage transfer function dependent on input conditions for an N-Input NAND Gate. The logic threshold voltage, defined as a voltage at which the input and the output voltage become equal, changes as the input condition changes for a static NAND Gate. The logic threshold voltage has the highest value when all the N-inputs undergo transitions and it has the lowest value when only the last input connected to the last NMOS to ground, makes a transition. This logic threshold voltage difference increases as the number of inputs increases. Therefore, in order to provide a near symmetric voltage transfer function, a multistage N-Input Gate consisting of 2-Input Logic Gates is desirable over a conventional N-Input Gate.

Analysis of The Electrical Characteristics of Power IGBT According to Design and Process Parameter (설계 및 공정 변수에 따른 600 V급 IGBT의 전기적 특성 분석)

  • Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.5
    • /
    • pp.263-267
    • /
    • 2016
  • In this paper, we analyzed the electrical characteristics of NPT planar and trench gate IGBT after designing these devices according to design and process parameter. To begin with, we have designed NPT planar gate IGBT and carried out simulation with T-CAD. Therefore, we extracted design and process parameter and obtained optimal electrical characteristics. The breakdown voltage was 724 V and The on state voltage drop was 1.746 V. The next was carried out optimal design of trench gate power IGBT. We did this research by same drift thickness and resistivity of planar gate power IGBT. As a result of experiment, we obtain 720 V breakdown voltage, 1.32 V on state voltage drop and 4.077 V threshold voltage. These results were improved performance and fabrication of trench gate power IGBT and planar gate Power IGBT.

Analysis of Threshold Voltage for Symmetric and Asymmetric Oxide Structure of Double Gate MOSFET (이중게이트 MOSFET의 대칭 및 비대칭 산화막 구조에 대한 문턱전압 분석)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.12
    • /
    • pp.2939-2945
    • /
    • 2014
  • This paper has analyzed the change of threshold voltage for oxide structure of symmetric and asymmetric double gate(DG) MOSFET. The asymmetric DGMOSFET can be fabricated with different top and bottom gate oxide thickness, while the symmetric DGMOSFET has the same top and bottom gate oxide thickness. Therefore optimum threshold voltage is considered for top and bottom gate oxide thickness of asymmetric DGMOSFET, compared with the threshold voltage of symmetric DGMOSFET. To obtain the threshold voltage, the analytical potential distribution is derived from Possion's equation, and Gaussian distribution function is used as doping profile. We investigate for bottom gate voltage, channel length and thickness, and doping concentration how top and bottom gate oxide thickness influences on threshold voltage using this threshold voltage model. As a result, threshold voltage is greatly changed for oxide thickness, and we know the changing trend greatly differs with bottom gate voltage, channel length and thickness, and doping concentration.

Gate Length Optimization for Minimum Forward Voltage Drop of IGBTs

  • Moon Jin-Woo;Park Dong-Wook;Choi Yearn-Ik;Chung Sang-Koo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.6
    • /
    • pp.246-250
    • /
    • 2005
  • The forward voltage drop of IGBT is studied numerically and analytically as a function of gate length. An analytical expression is presented for the first time for the surface potential variation along the channel layer under the gate of IGBT. The surface potential drop and the carrier density near the surface allow calculation of the forward voltage drop of IGBT analytically as a function of the gate length. The voltage-drop in the drift region near the gate decreases exponentially, whereas that on the surface increases linearly with increasing the gate length, the sum of which exhibits an optimum gate length, resulting in a minimum forward voltage drop. Based on the surface potential drop, a remodelling of the forward voltage drop of IGBT is also proposed.

Threshold Voltage Dependence on Bias for FinFET using Analytical Potential Model

  • Jung, Hak-Kee
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.1
    • /
    • pp.107-111
    • /
    • 2010
  • This paper has presented the dependence of the threshold voltage on back gate bias and drain voltage for FinFET. The FinFET has three gates such as the front gate, side and back gate. Threshold voltage is defined as the front gate bias when drain current is 1 micro ampere as the onset of the turn-on condition. In this paper threshold voltage is investigated into the analytical potential model derived from three dimensional Poisson's equation with the variation of the back gate bias and drain voltage. The threshold voltage of a transistor is one of the key parameters in the design of CMOS circuits. The threshold voltage, which described the degree of short channel effects, has been extensively investigated. As known from the down scaling rules, the threshold voltage has been presented in the case that drain voltage is the 1.0V above, which is set as the maximum supply voltage, and the drain induced barrier lowing(DIBL), drain bias dependent threshold voltage, is obtained using this model.