• 제목/요약/키워드: Gate Current

검색결과 1,528건 처리시간 0.036초

NMOSFET SOI 소자의 Current Kink Effect 감소에 관한 연구 (A Study on the Reduction of Current Kink Effect in NMOSFET SOI Device)

  • 한명석;이충근;홍신남
    • 전자공학회논문지T
    • /
    • 제35T권2호
    • /
    • pp.6-12
    • /
    • 1998
  • 박막의 SOI(Silicon-On-Insulator) 소자는 짧은 채널 효과(short channel effect), subthreshold slope의 개선, 이동도 향상, latch-up 제거 등 많은 이점을 제공한다. 반면에 이 소자는 current kink effect와 같이 정상적인 소자 동작에 있어 주요한 저해 요소인 floating body effect를 나타낸다. 본 논문에서는 이러한 문제를 해결하기 위해 T-형 게이트 구조를 갖는 SOI NMOSFET를 제안하였다. T-형 게이트 구조는 일부분의 게이트 산화막 두께를 다른 부분보다 30nm 만큼 크게 하여 TSUPREM-4로 시뮬레이션 하였으며, 이것을 2D MEDICI mesh를 구성하여 I-V 특성 시뮬레이션을 시행하였다. 부분적으로 게이트 산화층의 두께가 다르기 때문에 게이트 전계도 부분적으로 차이가 발생되어 충격 이온화 전류의 크기도 줄어든다. 충격 이온화 전류가 감소한다는 것은 current kink effect가 감소하는 것을 의미하며, 이것을 MEDICI 시뮬레이션을 통해 얻어진 충격 이온화 전류 곡선, I-V 특성 곡선과 정공 전류의 분포 형태를 이용하여 제안된 구조에서 current kink effect가 감소됨을 보였다.

  • PDF

새로운 게이트 절연막 구조를 가지는 다결정 실리콘 박막 트랜지스터 (Characteristics of the Novel Gate Insulator Structured Poly-Si TFT's)

  • 황한욱;최용원;김용상;김한수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 D
    • /
    • pp.1965-1967
    • /
    • 1999
  • We have investigated the electrical characteristics of the poly-Si TFT's with the novel gate insulator structure. The gate insulator makes the offset region to reduce leakage current, and the electrical characteristics are obtained by employing Virtual Wafer Fab. simulator. As increases the gate insulator thickness above the offset region of this structure from $0{\AA}$ to $2000{\AA}$, the OFF state current at $V_G$=10V decrease by two orders in magnitude while ON state current doesn't decrease significantly. ON/OFF current ratios for conventional device and the proposed device with $2000{\AA}$ gate insulator thickness are $1.68{\times}10^5$ and $1.07{\times}10^7$, respectively.

  • PDF

0.3 um급 Inverse-T Gate 모스와 LDD 모스의 전류구동력 및 신뢰성 특성비교 (Characterization of Current Drivability and Reliability of 0.3 um Inverse T-Gate MOS Compared with Those of Conventional LDD MOS)

  • 윤창주;김천수;이진호;김대용;이진효
    • 전자공학회논문지A
    • /
    • 제30A권8호
    • /
    • pp.72-80
    • /
    • 1993
  • We fabricated 0.3um gate length inverse-T gate MOS(ITMOS) and conventional lightly doped drain oxide spacer MOS(LDDMOS), and studied electrical characteristics for comparison. Threshold voltage of 0.3um gate length device was 0.58 V for ITMOS and 0.6V for LDDMOS. Measured subthreshold characteristics showed a slope of 85mV/decades for both ITLDD and LDDMOS. Maximum transconductance at V S1ds T=V S1gs T=3.3V was 180mS/mm for ITMOS and 163mS/mm for LDDMOS respectively. GIDL current was observed to be 0.1pA/um for ITOMS and 0.8pA/um for LDDMOS. Substrate current of ITMOS as a function of drain current was found to be reduced by a foactor of 2.5 compared with that of LDDMOS.

  • PDF

강유전체 표시기용 고전압 비정질 실리콘 박막트렌지서트의 온도변화 특성 (Temperature dependent characteristics of HVTFT for ferroelectric display)

  • 이우선;김남오;이경섭
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제9권6호
    • /
    • pp.558-563
    • /
    • 1996
  • We fabricated high voltage hydrogenerated amorphous silicon thin film transistors (a Si:H HVTFT) and investigated its temperature dependent characteristics of from 303 K to 363 K. The results show that the drain current was decreased at low gate voltage and increased at high gate voltage exponentially. According to the increasing the thickness of a Si layer, drain current increased. Difference of drain current at 363 K was increasd at the lower gate voltage and decreased at the higher gate voltage. When the drain and gate voltage of 100 V applied, the drain current increased linearly with rise temperature.

  • PDF

Oxide-Nitride-Oxide막을 게이트 절연막으로 사용하여 제조한 다결정실리콘 박막트랜지스티의 특성 (Properties of Poly-Si TFT's using Oxide-Nitride-Oxide Films as Gate Insulators)

  • 이인찬;마대영
    • 한국전기전자재료학회논문지
    • /
    • 제16권12호
    • /
    • pp.1065-1070
    • /
    • 2003
  • HTO(High Temperature Oxide) films are mainly used as a gate insulator for polysilicon thin film transistors(Poly-Si TFT's). The HTO films, however, show the demerits of a high leakage current and a low electric breakdown voltage comparing with conventional thermal oxides even though they have a better surface in roughness than the thermal oxides. In this paper, we propose an ONO(Oxide-Nitride-Oxide) multilayer as the gate insulator for poly-Si TFT's. The leakage current and electric breakdown voltage of the ONO and HTO were measured. The drain current variation of poly-Si TFT's with a variety of gate insulators was observed. The thickness optimization in ONO films was carried out by studying I$\_$on/I$\_$off/ ratio of the poly-Si TFT's as a function of the thickness of ONO film adopted as gate insulator.

Modeling negative and positive temperature dependence of the gate leakage current in GaN high-electron mobility transistors

  • Mao, Ling-Feng
    • ETRI Journal
    • /
    • 제44권3호
    • /
    • pp.504-511
    • /
    • 2022
  • Monte Carlo simulations show that, as temperature increases, the average kinetic energy of channel electrons in a GaN transistor first decreases and then increases. According to the calculations, the relative energy change reaches 40%. This change leads to a reduced barrier height due to quantum coupling among the three-dimensional motions of channel electrons. Thus, an analysis and physical model of the gate leakage current that includes drift velocity is proposed. Numerical calculations show that the negative and positive temperature dependence of gate leakage currents decreases across the barrier as the field increases. They also demonstrate that source-drain voltage can have an effect of 1 to 2 orders of magnitude on the gate leakage current. The proposed model agrees well with the experimental results.

다결정 실리콘 TFT에 대한 수소처리 영향 (Hydroquenation Effects on the Poly-Si TFT)

  • 하형찬;이상규;고철기
    • 전자공학회논문지A
    • /
    • 제30A권1호
    • /
    • pp.23-30
    • /
    • 1993
  • Hydrogenation on the top gate and bottom gate Poly-Si TET's was performed by using Nh$_{3}$ plasma and annealing SiN film deposited by PECVD and then the electric characteristics on Poly-Si TET were investigated. As the time of NA$_{3}$ plasma treatment increaes, on/off current ratio gradually increases and the swing value decreases. The trap densities of graim boundaries in Poly-Si decrease very much during the inital 20min of hydrogenation time, and the decreasing scale becomes smaller after 20 min. The electric characteristics of the top gate TFT are better than those of the bottom gate TFT, it is considered due to the defects at the interface between the Poly-Si and the underlayer, SiO$_{2}$. After NH$_{3}$ plasma was treated for 2 hours for the top gate TFT, as the aging time atroon temperature increases on current was not scacely changed and off current decreases more than 1 order. Gate current density recovers to original value after the aging treatment for 8 days and then the electric characteristics are finally improved. It is suggested that the degraded characteristics of gate oxide are improved, from the variations of C-V characteristics with aging time. For the hydrogenation of isothermal and isochronal annealing SiN film deposited by PECVD, the characteristics of Poly-Si TFT are improved with increasing annealing temperature and are not largely changed with increasing annealing time. This results is good in agreement with the hydrogen reduction in Sin film as variations of annealing temperature and time.

  • PDF

Electrical Characteristics of InAlAs/InGaAs/InAlAs Pseudomorphic High Electron Mobility Transistors under Sub-Bandgap Photonic Excitation

  • Kim, H.T.;Kim, D.M.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제3권3호
    • /
    • pp.145-152
    • /
    • 2003
  • Electrical gate and drain characteristics of double heterostructure InAlAs/InGaAs pseudomorphic HEMTs have been investigated under sub-bandgap photonic excitation ($hv). Drain $(V_{DS})-,{\;}gate($V_{DS})-$, and optical power($P_{opt}$)-dependent variation of the abnormal gate leakage current and associated physical mechanisms in the PHEMTs have been characterized. Peak gate voltage ($V_{GS,P}$) and the onset voltage for the impact ionization ($V_{GS.II}$) have been extracted and empirical model for their dependence on the $V_{DS}$ and $P_{opt} have been proposed. Anomalous gate and drain current, both under dark and under sub-bandgap photonic excitation, have been modeled as a parallel connection of high performance PHEMT with a poor satellite FET as a parasitic channel. Sub-bandgap photonic characterization, as a function of the optical power with $h\nu=0.799eV$, has been comparatively combined with those under dark condition for characterizing the bell-shaped negative humps in the gate current and subthreshold drain leakage under a large drain bias.

Kink-effect 개선을 위한 세 개의 분리된 N+ 구조를 지닌 대칭형 듀얼 게이트 단결정 TFT 구조에 대한 연구 (Single-silicon TFT Structure for Kink-effect Suppression with Symmetric Dual-gate by Three Split floating N+ Zones)

  • 이대연;황상준;박상원;성만영
    • 한국전기전자재료학회논문지
    • /
    • 제18권5호
    • /
    • pp.423-430
    • /
    • 2005
  • In this paper, we have simulated a Symmetric Dual-gate Single-Si TFT which has three split floating $n^{+}$ zones. This structure reduces the kink-effect drastically and improves the on-current. Due to the separated floating $n^{+}$ zones, the transistor channel region is split into four zones with different lengths defined by a floating $n^{+}$ region. This structure allows an effective reduction of the kink-effect depending on the length of two sub-channels. The on-current of the proposed dual-gate structure is 0.9 mA while that of the conventional dual-gate structure is 0.5 mA at a 12 V drain voltage and a 7 V gate voltage. This results show a $80 {\%}$ enhancement in on-current by adding two floating $n^{+}$ zones. Moreover we observed the reduction of electric field In the channel region compared to conventional single-gate TFT and the reduction of the output conductance in the saturation region. In addition we also confirmed the reduction of hole concentration in the channel region so that the kink-effect reduces effectively.