• 제목/요약/키워드: Galois Field

검색결과 108건 처리시간 0.029초

THE INVERSE GALOIS PROBLEM

  • MATYSIAK, LUKASZ
    • Journal of applied mathematics & informatics
    • /
    • 제40권3_4호
    • /
    • pp.765-767
    • /
    • 2022
  • The inverse Galois problem concerns whether or not every finite group appears as the Galois group of some Galois extension of the rational numbers. This problem, first posed in the early 19th century, is unsolved. In other words, we consider a pair - the group G and the field K. The question is whether there is an extension field L of K such that G is the Galois group of L. In this paper we present the proof that any group G is a Galois group of any field extension. In other words, we only consider the group G. And we present the solution to the inverse Galois problem.

Lagrange 보간법에 의한 Galois 스윗칭함수 구성 (Derivation of Galois Switching Functions by Lagrange's Interpolation Method)

  • 김흥수
    • 대한전자공학회논문지
    • /
    • 제15권5호
    • /
    • pp.29-33
    • /
    • 1978
  • 본 논문에서는 Galois 스윗칭함수를 구하기 위해서 임의의 유한체상에서 정의되는 Galois 체의 성질을 설명하였고, 임의의 유한체상에서의 연산방법을 밝혔다. 고리고 Lagrange 보간법에 의한 다항식이 유한체상에서 전개될 수 있음을 증명하였다 이 결과를 적용하여 단일변수를 갖는 Galois스윗칭 함수를 유도하고 다치논리회로를 실현하였다.

  • PDF

시스템 상수의 효과적인 사용을 통한 Galois 필드에서의 고성능 지수제곱 연산 VLSI 설계 (Design of a High Performance Exponentiation VLSI in Galois Field through Effective Use of Systems Constants)

  • 한영모
    • 전자공학회논문지SC
    • /
    • 제47권1호
    • /
    • pp.42-46
    • /
    • 2010
  • 정보보안을 위한 암호화는 종종 Galois Field 상에서 산술 연산의 형태로 이루어진다. 본 논문은 Galois Field 상에서 산술 정보의 지수 연산 처리를 효과적으로 수행하는 방법을 제안한다. 특히 기존의 비트별 병렬 처리 지수 연산기에서 게이트 카운트가 큰 요소를 제거하고, 시스템 상수를 효과적으로 사용하도록 개량함으로써, m 값이 큰 경우에도 고성능인 VLSI 시스템을 설계한다.

FORM CLASS GROUPS ISOMORPHIC TO THE GALOIS GROUPS OVER RING CLASS FIELDS

  • Yoon, Dong Sung
    • East Asian mathematical journal
    • /
    • 제38권5호
    • /
    • pp.583-591
    • /
    • 2022
  • Let K be an imaginary quadratic field and 𝒪 be an order in K. Let H𝒪 be the ring class field of 𝒪. Furthermore, for a positive integer N, let K𝒪,N be the ray class field modulo N𝒪 of 𝒪. When the discriminant of 𝒪 is different from -3 and -4, we construct an extended form class group which is isomorphic to the Galois group Gal(K𝒪,N/H𝒪) and describe its Galois action on K𝒪,N in a concrete way.

GALOIS THEORY OF MATHIEU GROUPS IN CHARACTERISTIC TWO

  • Yie, Ik-Kwon
    • 대한수학회지
    • /
    • 제44권1호
    • /
    • pp.199-210
    • /
    • 2007
  • Given a field K and a finite group G, it is a very interesting problem, although very difficult, to find all Galois extensions over K whose Galois group is isomorphic to G. In this paper, we prepare a theoretical background to study this type of problem when G is the Mathieu group $M_{24}$ and K is a field of characteristic two.

FORMULAS OF GALOIS ACTIONS OF SOME CLASS INVARIANTS OVER QUADRATIC NUMBER FIELDS WITH DISCRIMINANT D ≡ 1(mod 12)

  • Jeon, Daeyeol
    • 충청수학회지
    • /
    • 제22권4호
    • /
    • pp.799-814
    • /
    • 2009
  • A class invariant is the value of a modular function that generates a ring class field of an imaginary quadratic number field such as the singular moduli of level 1. In this paper, using Shimura Reciprocity Law, we compute the Galois actions of some class invariants from the generalized Weber functions $\mathfrak{g}_0,\mathfrak{g}_1,\mathfrak{g}_2$ and $\mathfrak{g}_3$ over quadratic number fields with discriminant $D{\equiv}1$ (mod 12).

  • PDF

GALOIS ACTIONS OF A CLASS INVARIANT OVER QUADRATIC NUMBER FIELDS WITH DISCRIMINANT D≡64(mod72)

  • Jeon, Daeyeol
    • 충청수학회지
    • /
    • 제26권1호
    • /
    • pp.213-219
    • /
    • 2013
  • A class invariant is the value of a modular function that generates a ring class field of an imaginary quadratic number field such as the singular moduli of level 1. In this paper, we compute the Galois actions of a class invariant from a generalized Weber function $g_1$ over imaginary quadratic number fields with discriminant $D{\equiv}64(mod72)$.

GALOIS ACTIONS OF A CLASS INVARIANT OVER QUADRATIC NUMBER FIELDS WITH DISCRIMINANT D ≡ 21 (mod 36)

  • Jeon, Daeyeol
    • 충청수학회지
    • /
    • 제24권4호
    • /
    • pp.921-925
    • /
    • 2011
  • A class invariant is the value of a modular function that generates a ring class field of an imaginary quadratic number field such as the singular moduli of level 1. In this paper, using Shimura Reciprocity Law, we compute the Galois actions of a class invariant from a generalized Weber function $g_2$ over quadratic number fields with discriminant $D{\equiv}21$ (mod 36).