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GALOIS THEORY OF MATHIEU GROUPS
IN CHARACTERISTIC TWO

IKKwWON YIE

ABSTRACT. Given a field K and a finite group G, it is a very interest-
ing problem, although very difficult, to find all Galois extensions over K
whose Galois group is isomorphic to G. In this paper, we prepare a theo-
retical background to study this type of problem when G is the Mathieu
group Mgy and K is a field of characteristic two.

1. Introduction

Let k be a field of characteristic p > 0. Every Galois extension of k with
cyclic Galois group of order p is obtained as the splitting field of the Artin-
Schreier polynomial Y? — Y + a for some a € k. In [7] Saltman generalized
this idea and developed the theory of generic extensions. It is said that there
is a generic extension for a finite group G over a field K if there is a ring
extension of finite K-algebras such that every Galois extension of K with Galois
group G can be obtained as a specialization of this ring extension. Abelian
groups are basic concrete examples to this theory arising from the theory of
Kummer extensions and the Artin-Schreier polynomial. Saltman also proves
that semidirect products and wreath products of groups have generic extensions
under certain conditions.

However, if it comes to a specific group, it is very difficult to decide whether
there is a generic extension. To lay a theoretical background to investigate
this problem for the largest Mathieu group My4 in characteristic two is our
purpose in this paper. Note that concrete polynomials are written down in
[2, 4, 5, 8] and are shown to have Mathieu groups as their Galois groups using
what Abhyankar called linearization process. We start with a new look on these
applications of linearization process from group representation point of view.

It is generally understood that the outcome of the linearization process pro-
vides a modular representation of the Galois group in the splitting field of given
polynomial. In fact, this is not a peculiar phenomenon that occurs only when
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one can apply the linearization process. Rather, ‘essentially’ every representa-
tion of a finite group G can be found in Galois extensions with Galois group
G. More precisely, we will prove, in section 2, the following theorem and then
present as examples the cases when G is one of the Mathieu groups and the
representations are binary Golay codes and Todd modules.

Theorem 1.1. Let L be a finite Galois extension over a field K with the Galois
group G.

(1) If we fiz a normal basis N for L, then L becomes a left module over
the group algebra K|[G), which is isomorphic to K[G]. Thus for every
left ideal I of K|G, there is a K-subspace V of L which is a K[G]-
submodule isomorphic to I.

(2) Fiz a normal basis N and regard L as K|G] as above. Let J C I be
left ideals of L(= K|[G]). Suppose I,J are defined over a finite subfield
k of K. That is, suppose I,J have (K-)generating sets which belong
to the k-span of N'. Then there is a K-subspace W of L which is a
K[G]-submodule isomorphic to I/J.

Note that Abhyankar implicitly proves this theorem for faithful representa-
tions in section 3 of [3]. That is, given any faithful representation V of G over
k, he finds a k-subspace of L which is isomorphic to the representation on the
dual space V' of V. Since the isomorphism between dual vector spaces is not
natural, the subspace Abhyankar found may not be isomorphic to V' as repre-
sentations unless some special conditions are satisfied (e.g., G is contained in
the orthogonal group O(V)). Our proof deals directly with the representation
and submodules of L. Also note that the subrepresentation W of L in the
theorem doesn’t have to be faithful. If the kernel of the representation W is
H < G, then K(W) is a Galois extension with Galois group G/H.

In section 3, we will prove as direct consequences of the observations made
in the examples in section 2 that EVERY Mathieu group (of degree 12, 23, or
24) extensions can be found using the linearization technique. We also provide
the linearization process written as an algorithm that can be readily coded into
a computer program.

In section 4, we make observations on the Galois theoretic relations of My3 as
a point stabilizer inside Ma4. The construction of extended binary Golay code
Go4 from the Golay code Gy3 will be vividly realized in the Galois theoretical
context. Moreover, it is a remarkable fact that all known polynomials F in
characteristic two with Galois group My, are of the form F = YF + T, where
F is a polynomial of degree 23 with Galois group Ms3 and T is an indeterminate.
We will show that this is an aspect of a general phenomena. Namely, we will
prove:

Theorem 1.2. Let K be a field of characteristic two and F = F(Y) be a
monic polynomial of degree 23 over K whose Galois group is Mas. If we let
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F=FY)= YF(Y)+T € K(T), where T is an indeterminate over K, then
the Galois group of F over K(T') is Maq.

In section 5, by analyzing the Todd modules generated by the roots, we
will prove that a few coefficients of certain degree terms of Mathieu group
polynomials should vanish. By speculating the steps of linearization process
and the correspondence of My, polynomials with M3 polynomials we claim
that more coeflicients should vanish.

The author would like to express his gratitude to Professor Abhyankar for
inspiring conversations and encouragement in preparing this paper.

2. Group representations in Galois extensions

In this section, we prove Theorem 1.1. The part (1) is obvious and self
explanatory. To prove part (2), we need Proposition (2.2) in [3], which is the
vectorial part of the following lemma. Let us first prepare the terminology.

Let p be a prime and ¢ be a positive power of p. Let k be the field of
g elements and K be a field containing k. By a vectorial (resp., affine) ¢-
polynomial (over K) of g-degree m, we ‘mean a polynomial of the form A =
e a; Y7 (tesp., N =Y, a;Y?" " +ae), where ag, a1, ... ,0m, 000 € K
and ag # 0. When L is an overfield of K, it is clear that the set W of roots
in L of a vectorial ¢g-polynomial A over K form a vector space over k and the
set W’ of roots in L of the affine g-polynomial A + C with C € K is an ‘affine
translate’ of W. The converse of this is also true:

Lemma 2.1. Let K be a field containing a subfield k of q elements. Let W be
an m dimensional vector subspace of K over k. Then
(1) A=Jl,ew (Y —w) is a vectorial g-polynomial over K of g-degree m;
(2) AN =Tl,ew(Y —w —c) with c € K is an affine g-polynomial over K
of q-degree m.

Proof. The affine part follows immediately from the vectorial part by noting
AN(Y) = A(Y —c) = A(Y)—-A(e). The vectorial part can be proved by induction.
If m=1, then W = {ab| « € k} for some b € W and
ABY) = JI®Y =ab) =b [ (¥ — o) = 69(Y = Y) = (bY)? — b7 (bY).
ack ack
Thus A(Y) = Y7 —b971Y. Now suppose A(Y) = [[,cn (Y — w) is a vectorial
g-polynomial and W is the k-span of W U {b} for some element b € K. Then

Av)y=J[v-o=]] (H (Y—aE—w))
weW ack \weW
= [J AY = ab) = J] (A(Y) — (D))

= (A(Y)? = (A(B)*HA(Y)
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is a vectorial g-polynomial. O

Now we come back to the proof of Theorem 1.1. Since I (resp., J) is a K[G]-
submodule defined over k, there is a finite subset By (resp., By) of spang(N),
the k-span of A, which is mapped onto itself by G and spans 7 (resp., J) as a
K-vector space. Let C = spang(By). Then by Lemma 2.1,

a(v) = [J(v - )
veC
is a vectorial g-polynomial, where g is the number of elements in k. We have
®(Y) € K[Y] because C is mapped onto itself by G. Define a K-linear map
¢ : I — L by setting ¢(w) = ®(w), for each w € B;. Clearly, ¢ is a K|G]-
module homomorphism whose kernel is J. It follows that the image ¢(I) € L
is isomorphic to I/J as K{G]-module.

Before closing this section, we present examples which will be the main
objects of study in this paper. In these examples, we let K be a field of
characteristic two and k be its prime subfield and we deal only with k[G]-
modules rather than K[G]-modules. Let L be a Galois extension of K with
Galois group G and suppose we have fixed a normal basis N = {¢(8) | ¢ € G}.

Example 1. Take G = Moz, the Mathieu group of degree 23. Let H be a
subgroup of G of index 23 and Hy = H, H, ..., Hy3 be the left cosets of H.
Let b; =Y ,cp 0(8) fori=1,...,23. Then B={b;|i=1,...,23} is linearly
independent over K and mapped onto itself by G and V = spani(B) is the
usual permutation module of G. There is a 12-dimensional subspace in V which
is mapped onto itself by G, i.e., the Golay code Ga3. Then the quotient of V'
by Gas is the Todd module for G (the cocode of Ga3) and has an isomorphic
copy V = ®(V) in L of k-dimension 11, where ® is the vectorial 2-polynomial
having Ga3 as the set of roots and regarded as a function on V. Note that V' is
partitioned into 4 subsets in terms of the weight of the vectors. Namely, the set
By = {0} consisting only of 0 vector (weight 0), the set B; = ®(B) of () = 23
vectors of weight 1, the set By of (%) = 253 vectors of weight 2, and the set
B; of () = 1771 vectors of weight 3. Also note that G acts faithfully and
transitively on each B; for ¢ = 1,2, 3 and hence K(B;) = K(B2) = K(Bs) = L.
The action of G on B is the usual 4-transitive permutation action of Mz of
degree 23.

Example 2. Take G = My, the Mathieu group of degree 24. Let H be a
subgroup of G of index 24 and Hy = H, Hy, ..., Hg3 be the left cosets of H.
Let b; = Yoer, 0(B) fori=0,...,23. Then B=1{b;|i=0,...,23} is linearly
independent over K and mapped onto itself by G and V = spany (B) is the usual
permutation module of G. There is a 12-dimensional subspace in V which is
mapped onto itself by G, i.e., the extended Golay code G24. Then the quotient
of V by Gay is the 12-dimensional Todd module for G (the cocode of Gay) and
has an isomorphic copy V = ®(V) in L where @ is the vectorial 2-polynomial
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having Go4 as the set of roots and regarded as a function on V. Note that V is
partitioned into 5 subsets in terms of the weight of the vectors. Namely, the set
By = {0} consisting only of 0 vector (weight 0), the set By = ®(B) of (%') = 24
vectors of weight 1, the set By of (%) = 276 vectors of weight 2, the set Bj
of (%) = 2024 vectors of weight 3, and the set By of (%')/6 = 1771 vectors of
weight 4. Again G acts faithfully and transitively on each B; for ¢ = 1,2,3,4
and hence K(B;) = K(By) = K(B3) = K(B4) = L. The action of G on By is
the usual 5-transitive permutation action of Mayy of degree 24. Also note that
Vo = BoU B2 U By is the 11-dimensional Todd module for G and V] = B; U By
becomes an affine translate of Vj.

Example 3. Take G = M3, the Mathieu group of degree 12. Let H be a
subgroup of G of index 12 and Hy, = H, Ha, ..., Hyo be the left cosets of H.
Let by = Y ,ep, 0(B) for i = 1,...,12. Then B = {b; | i = 1,...,12} is
linearly independent over K and mapped onto itself by G and V = span(B)
is the usual permutation module of G. It is a well known fact that G has
other subgroup H' of index 12 which is abstractly isomorphic to H but not
conjugate to H in G. Let Hy = H', H}, ..., H{5 be the left cosets of H' and let
b = Spem o(B) fori=1,...,12. Then B = {b} | i = 1,...,12} is linearly

-

independent over K and mapped onto itself by G and V' = spany(B') is the
usual permutation module of G but not equivalent to V.

Note that M2 is a subgroup of My, and the restriction of the usual permu-
tation module V of My, to the subgroup G = My, is isomorphic to V @ V.
However, the k[G]-submodule V 4+ V" of L is of one less dimension (over k) due
to the fact that 3.2, b; = 3202, b = >_~en - Denote this common value by
a. If we let G to be the image of the Golay code submodule Goy of V &V’ under
the obvious map of V @ V' onto V 4 V’, then o € G. Therefore the quotient
module (V 4+ V’)/G is isomorphic to the cocode of Gy4 (the Todd module of
Moy restricted to G) and has an isomorphic copy W = ®(V + V') in L of
k-dimension 12, where @ is the vectorial 2-polynomial having G as the set of
roots and regarded as a function on V + V.

Just like the case of Moy, the set Wy of vectors in W of even weight becomes a
k[G]-submodule of k-dimension 11 and the set W; of vectors in W of odd weight
becomes an affine translate of Wy. The 24 vectors of weight 1 are grouped into
two sets of 12 vectors, that is, B = ®(B) and B’ = &(B) on each of which G
acts faithfully and 5-transitively. It follows that K(B) = K(B’) = L. The one
point stabilizer H (of the G-action on B) acts 3-transitively on B’ and the one
point stabilizer H' (of the G-action on B’) acts 3-transitively on B.

What is different from the case of M4 is that W has two nonequivalent sub-
modules V = ®(V) = span,(B) and V' = ®(V') = span,(B’) of k-dimension
11. The three distinct 11-dimensional submodules W, ‘7, V' intersect in a 10-
dimensional submodule Wg, which is a simple &k[G]-module. Then, Wl = V\Wg
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(resp., Wl’ = V/\ Wp) is an affine translate of W, which contain B (resp., B').
Note that we have Wo UV UV’ =W and W, UW| = W;.

Remark 1. We can make up a similar situation as the last paragraph of Example
3 as following. Let ¢ be any element in K but not in V and let b = b; + ¢
for i = 1,...,12. Then V* = span, (B*), where B* = {b%,...,b%,}, is a k[G]-
module isomorphic to V and intersects with V in Wo. Therefore W* =V + v*
is a k[G]-module of degree 12 which is not isomorphic to W. In Theorem 4.2 of
[8], W* was constructed from a pair of degree 12 polynomials and shown to be
isomorphic to the cocode (the ambient space modulo the code) of the doubly
even binary code of length 24 and minimal weight 4.

However, this code is not very useful in computing Galois group because the
group of automorphisms of this code contains an isomorphic copy of Sis.

Example 4. Take G = Aut(M;2), the group of automorphisms of Mi3. Then
the two isomorphic subgroups H and H' of Mis of index 12 which are not
conjugates in Mo become conjugates in G. Let Hy = H, Ha,..., Hyy be the
left cosets of H. Let b; = Y ., o(B) for i =1,...,24. Then B = {b; | i =
1,...,24} is linearly independent over K and mapped onto itself by G and V =
spang(B) is a k[G]-module of k-dimension 24. Note that G = Aut(M;s) is a
subgroup of My, and the restriction of the usual permutation module V of Moy
to the subgroup G is isomorphic to V. Therefore the quotient module V/Gay
is isomorphic to the cocode of Go4 and has an isomorphic copy W = ®(V) in
L of k-dimension 12, where ® is the vectorial 2-polynomial having Go4 as the
set of roots and regarded as a function on V. Just like the case of Moy, the set
Wy of vectors in W of even weight becomes a k[G]-submodule of k-dimension
11 and the set Wi of vectors in W of odd weight becomes an affine translate
of Wo.

3. Linearization

In [2], Abhyankar determined the Galois group of Y2 + X Y3 41 over k(X),
where k is a field of characteristic two, to be the Mathieu group Ms; using
the technique which he called linearization. In [4], Abhyankar and Yie deter-
mined the Galois group of the similar looking polynomial Y24 4+ XY4+Y + T
over k(X,T) to be the Mathieu group My, using practically the same com-
putation of linearization process as above. Again using the linearization pro-
cess in [5], Abhyankar and Yie found polynomials whose Galois groups are
the small Mathieu groups M2 and My;. In [8], Yie found the polynomial
Y24+ UY6 + (U*+VO)Y8 + XY* 4+ UVY? +Y + T, which embraces all the
above mentioned polynomials as various specializations of it, then determined
the Galois group over k(U,V, X, T) to be the Mathieu group Moy.

Due to the highly transitive nature of Mathieu groups, it was hard to tell
them apart from the alternating or symmetric groups in computing Galois
groups, and so far this linearization process is the only successful method. The
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following theorems tell us that every Mathieu group extensions can be found
using linearization technique.

Theorem 3.1. Let K be a field of characteristic two and L be a Galois ex-
tension over K with Galois group Mys. Then L is the common splitting field
of irreducible polynomials F1 of degree 23, Fy of degree 253, and F3 of degree
1771 in K[Y] such that A = YF1F2F3 is a vectorial 2-polynomial over K of
2-degree 11.

Proof. Let V be the Todd module constructed in Example 1 of the previous
section and By, B1, By, B3 be the partition of V in terms of weight. Then
F; = [l,ep,(Y —r) for i = 1,2,3 are irreducible over K since the Galois
group acts transitively on each B;’s. It follows that A = YFiFoF3 € L[Y] is
a vectorial 2-polynomial of 2-degree 11 since the vector space V = U3_ B, of
dimension 11 over GF(2) is the set of roots of A in L. O

Theorem 3.2. Let K be a field of characteristic two and L be a Galois ex-
tension over K with Galois group Msy. Then L is the common splitting field
of irreducible polynomials Fy of degree 24, Fy of degree 276, F3 of degree 2024,
and Fy of degree 1771 in K[Y] such that Ay = FF3 is an affine 2-polynomial
over K of 2-degree 11, Ag = Y F3Fy 1s a vectorial 2-polynomial over K of 2-
degree 11 which differs from A1 by a constant in K, A = AgAy is a vectorial
2-polynomial over K of 2-degree 12.

Proof. Let V be the Todd module constructed in Example 2 of the previous
section and By, B1, By, Bz, B4 be the partition of V in terms of weight. Then
Fy = [l,ep, (Y — 1) for i = 1,2,3,4 are irreducible over K since the Galois
group acts transitively on each B;’s. It follows that A = YFi F, F3Fy € K[Y]
is a vectorial 2-polynomial of 2-degree 12 since the vector space V = U3_,B;
over GF(2) is the set of roots in L. Also, the two factors Ag = Y F>Fy and
Ay = F1F; in K[Y] are respectively a vectorial 2-polynomial and an affine 2-
polynomial of 2-degree 11 which differ by a constant in K since the subspace
Vo = By U By U By and its affine translate V3 = By U B3 are their respective
sets of roots in L. ]

Theorem 3.3. Let K be a field of characteristic two and L be a Galois ex-
tension over K with Galois group My>. Then L is the common splitting field
of two irreducible polynomials F and F' of degree 12 over K and two affine
2-polynomials ¥ and V' of 2-degree 10 over K such that

(1) W (resp., ¥') is a multiple of F' (resp., F');

(2) U and ¥ are differ by a constant in K.
It follows that Ay = OV’ s an affine 2-polynomial over K of 2-degree 11 which
is @ multiple of FF'. Moreover, if b € L (resp., b’ € L) is a root of F' (resp.,
F') then F' (resp., F) remains irreducible over K(b) (resp., K(b')).

Proof. We use the various subsets of the Todd module W constructed in Ex-
ample 3 of the previous section. Let F =[], cp(Y —7), F' = [ cp (Y — '),
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U =L ew, (Y — 1), and ¥' = HTEW{(Y —r). The two polynomials F, F’ of
degree 12 are irreducible over K because the Galois group acts transitively on
each of B and B’. The generating set B (resp., B’) of V (resp., V') is contained
in the affine translate W; (resp., Wl’) of the subspace W,. Therefore, the two
polynomials ¥, ¥’ are affine 2-polynomials of 2-degree 10 over K which differ
by a constant. Obviously, ¥ (resp., ¥’) is a multiple of F (resp., F’). It follows
that L is the common splitting field of F and F”, hence also of ¥ and ¥ since
the action of the Galois group on each of B and B’ is faithful.

For by € B (resp., by € B’), we have Gal(L, K (b)) = H (resp., Gal(L, K (b;))
= H’). However, the action of H (resp., H') on the set B’ (resp., B) of roots
of F' (resp., F) are 3-transitive. Thus F’ (resp., F) is irreducible over K(b)
(resp., K(b')). 0O

Note that the polynomials mentioned at the beginning of this section are
related with Todd modules like the polynomials in above theorems. The reason
why polynomials related with permutation modules are not used in constructing
Mathieu group extensions is because the vectorial 2-polynomials which are
multiples of such polynomials must have 2-degree at least one less the degree
and it is very hard to extract information about the Galois groups.

In order to describe generic extensions, if any, for Mathieu groups in concrete
form, it is inevitable to apply the linearization process to polynomials with
indeterminate coefficients and this process can be fairly complicated as is shown
in Appendix of [8]. For future reference, we briefly describe the process of
finding the vectorial polynomial which is a multiple of given polynomial.

Linearization Algorithm
Input: A polynomial F' € K[Y] of degree n, where K is a field of characteristic
p>0
Output: An affine p-polynomial of p-degree N which is a multiple of F' for an
appropriate N <n
Synopsis: A[j] is an affine p-polynomial of p-degree 7 which is congruent to
F[j] of degree < n modulo F. We say that F is linearized at N.

(1) Set Aim —1]=F[m ~1] = Y?" 7' where p™~! < n < p™.
(2) For m < j < N repeat:
(a) Set A'[j] = A[j—1]? and F'[j] = the reduction of F[j —1]” modulo
F

(b) Collect the terms of F'{j] of Y-degree 0 and power of p to form
an affine p-polynomial A and set F[j] = F'[j] — A and Afj] =
A'j] - A
(3) Find A; € K[Y] for j =m,..., N such that ") A;F[s] = 0.
(4) Output A = >N A,A[j).

j=m
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Remark 2. Let D be an integrally closed subdomain of K and suppose F' €
D[Y]. (In most of practical applications, D is a polynomial ring over a finite
field & in several variables and K is the quotient field of D.) Then A € D[Y].

4. Interactions of Mathieu groups of degrees 23 and 24

This section is divided into two parts. The first part deals with downward
interaction - from My, to its point stabilizer Msy3. Here, we study Galois
correspondence of Mas as a point stabilizer of My4 inside a Galois extension
with Galois group My4. The second part deals with upward interaction - from
M3 to its transitive extension Msyy. Here, we prove Theorem 1.2.

From M4 to Mss: Let us denote the Mathieu group Moy by G and a
subgroups of index 24 by H. Then H is isomorphic to the Mathieu group Maj.
We want to study the Galois theoretic counterpart of this subgroup H < G
with respect to the Todd modules as appeared in section 2 and the defining
equations of the Galois extension as appeared in section 3.

Suppose, for the time being, we are in the situation of Example 2 and let
symbols represent the same objects. Thus, K is a field of characteristic two, k
ig its prime subfield and L is a Galois extension with Galois group G = Moaa.
The usual permutation k[G]-module V is realized in L as spang(B), where
B={b|i=0,...,23} is a K-linearly independent subset L on which G has
5-transitive action. The subgroup H is the point stabilizer of by of this action.

Then H is the Galois group of L over its fixed field Ko = K(bg). Let
& = by —bo for i =1,...,23. It follows that C = {¢ | i = 1,...,23} is lin-
early independent over Ko and W = spany(C) becomes the usual permutation
module of H (with respect to the basis C). The extended Golay code k[G]-
submodule G = Go4 of V is contained in W as a subset and becomes the Golay
code k[H]-submodule Go3 of W (with respect to the basis C). Note that this
situation perfectly fits into the construction of the extended code Go4 from Gos
using by as the parity check bit. .

The vectorial 2-polynomial ® having G as the set of roots can be thought
of as a k[G]-module homomorphism of V into L and does map V onto the
12-dimensional Todd module V for G. We have a partition V = ByUB; U BsU
B3 U By of V in terms of weight. The subset Vj = By U By U By consisting of
vectors of even weight is the 11-dimensional Todd module for G.

Note that ® can also be thought of as a k[H]-module homomorphism of W
into L. By the definition, each vector of W is mapped by & onto a vector of
even weight (as a vector in V). Thus the Todd module W = &(W) for H
coincides with Vj as a set.

Now, we also make use of the notations of Theorem 3.2 and its proof. Thus
Fi = [l,ep,(Y — ) for i = 1,2,3,4 are irreducible over K and Ay = Y2 Fy
and A; = F1F3 in K[Y] are respectively a vectorial 2-polynomial and an affine

2-polynomial of 2-degree 11 which differ by a constant in K. Let b; = ®(b;)

for i = 0,1,...,23. Then the action of G on B; = ®(B) = {bo,b1,...,ba3} is
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equivalent to that of G on B. It follows that the ‘root field’ of Fy is K (bg) =
K (bg) = Kp. _
Let ¢; = b; — by for i = 1,...,23. Then the action of H on C = ®(C) =
{c1,...,co3} is equivalent to that of H on C. Note that F] = Hfil(Y —¢) =
$[F1(Y + bg) — Fi(bo)] is what Abhyankar calls ‘the twisted derivative’ of Fj.
It follows from 5-transitivity of G that Fj is irreducible over Ky. The Todd
module W for H is spanned by the set C of roots of F|. Note that W is the
set of roots of Ag. Therefore, over Ky, Fy remains irreducible while Fy factors

into F| and an irreducible factor of degree 253.

From Ms3 to May: We now turn to the proof of Theorem 1.2. Thus, let K
be a field of characteristic two and F' = F(Y') be a monic polynomial of degree
23 over K whose Galois group is M. Also, let F = F(Y) =YF(Y)+T €
K(T), where T is an indeterminate over K. We need to prove that the Galois
group of F over K(T') is Moy.

Let L be the splitting field of F over K and L be the splitting field of F over
K(T). Let R be the local ring K[T](ry and (S, m) be the local ring obtained
by localizing the integral closure of R in L at a maximal ideal. Note that all
24 roots of F belong to S. Let v : § — L be a homomorphism obtained by
extending the canonical epimorphism R — K. Then the kernel of v is m. Since
F is mapped onto Y'F by -, only one root of F is mapped to 0 and hence belongs
to m. Therefore the decomposition group H of S is a point stabilizer of G =
Gal(F, K(T)). It follows that G is at least 5-transitive since H is mapped onto
Gal(L, K) = Mas under the map induced by 7 which preserves the permutation
actions of automorphisms (of fields) on the roots of corresponding polynomials.
Now, any subgroup of the symmetric group Ss4 is isomorphic to May.

Remark 3. All known polynomials with Galois group Ms3 or Moy are related
with the Todd modules, i.e., the roots generate relevant Todd module. However,
we don’t know whether F' in Theorem 1.2 is related with the Todd module,
though we strongly believe so. It would be interesting either to see the proof,
or to see a counterexample.

5. Mathieu group polynomials in characteristic two

Theorem 5.1. Let K be a field of characteristic two and let n = 23 or 24.
Consider a polynomial F = F(Y) =YY" + 3", a;Y""* € K[Y] of degree n.
Suppose the Galois group G = Gal(F, K) is isomorphic {as a permutation group
on the set R of roots of F' in a splitting field) to a subgroup of the Mathieu group
M,, and suppose R generates over the prime subfield a subspace isomorphic to
the Todd module for M,,. Then a; =0 fori=1,2,3.

Proof. Let bso,bg, b1, ...,bae be the roots of F(Y) in the splitting field. We
choose, for the index set, the projective line = {00, 0, ...,22} over the Galois
field F = GF(23) because it fits best with our proof of the theorem. We regard
the Golay code G4 as a collection of certain subsets of © as in Chapter 11 of
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[6] and follow the arithmetic conventions thereof. Thus a subset J of {2 is a
codeword if and only if ) ;b = 0.

Here, we only present the proof for the case n = 24. The proof for the case
n = 23 will follow easily by noting that co € £2 is the augmented bit for parity
check.

Let Q' be the set of quadratic residues in F and N’ be the set of quadratic
nonresidues of F. Also let Q = {0}UQ" and N = N'U{oc}. Note that then Q
and N are complementary codewords of weight 12. For indexing purpose, we
give order to § as we would for integers and the symbol co. And keep in mind
that arithmetic with the roots b, is in characteristic two while the arithmetic
with the indices in Q is basically modulo 23.

ay; = 0: First of all, we have a; = ZTGQ b, = 0 since €1 is a codeword.

az = 0: Consider the set So = {(r,r +3s) | r € F, s € N} of ordered pairs
of distinct elements of 2. Suppose two such pairs (r,7 + s), (v, +§') € Sy
produce the same unordered pair {r,7 + s} = {r/,7' + s'}. Since -1 =22 is a
nonresidue in F, this is possible only when 7 = r’ and s = s’. Hence S, produce
exactly 23 x 12 distinct unordered pairs while the 24 element-set €} has exactly
so many unordered pairs of distinct elements. Therefore we have

ap= Y, bbe=> b by

7,860, r<s relf SEN

Note that 7+ N = {r + s | s € N} is a codeword for all » € F since N is a
codeword and Go4 admits the cyclic shifts on F as automorphisms. It follows
that >° .y brys = 0 for all » € F and hence az = 0.

ag = 0: Consider the set S5 = {(r,r+s,7+1t) | r € F, s € N, t €
@’} of ordered triples of distinct elements of €. Suppose two such triples
(r,r + 5,7+ t),(r',r" + §,7" +t') € S5 produce the same unordered triples
{r,r+s,r+t}={r',v" +s,r +t'}. Asabove, {r,r+ s} ={r',r’'+ '} if and
only if r = r’ and s = §’. Thus we fall into one of the following three cases:

(WHr=7,8=¢,andt=1t;
2 r=r"+¢,r+s=r"+t,andr+¢t=r'
By r=r'+t,r+s=randr+t=r"+¢

In case (2), we get s+8 =/, s = ¢t+t/, and s’ +¢ = 0. Similarly in case (3), we
get s+8 =t, s =t+t/, and s+& = 0. Out of 11x6 (unordered) pairs of distinct
elements in N, 11 x 3 pairs add up to a quadratic residue. It is best to look at
examples to study the relations of these pairs. For example, let us take the pair
5+ 7 = 12. There are two notable aspects of these pairs. The first aspect is
that for each such pairs, there are two more pairs that altogether form a family.
Namely, for the example 5+ 7 = 12, we have 7+ 11 = 18 and 11+ 5 = 16. Note
that then 124+ 18 =7, 18+ 16 = 11, and 16 + 12 = 5. The other aspect is that
for a given such pair, we have two ways to complete the complementary pairs
of elements in ¢)’. Namely, for the example 5+ 7 = 12, we have b = 16 + 12
and 7+ 16 = 0 in case (2), and 7 = 12 + 18 and 5 + 18 = 0 in case (3).
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Therefore, three triples (0,0+5,0+ 16), (16,16 +7,16 +12), (5,5+ 11,5+ 18)
produce the same unordered triples as in case (2), and three triples (0, 5,12),
(5,5+ 7,5+ 18), (12,12 + 11,12 + 16) produce the same unordered triples as
in case (3). Hence S3 will produce 23 x 12 x11 —23 x2x2x 11 =23 x 11 x 8
distinct unordered triples out of which 23 x 11 x 2 triples are repeated three
times. Note that the 24 element-set 2 has 23 x 11 x 8 unordered triples of
distinct elements. Therefore we have

as = Z brbsbt = Z b,«br+t Z b7~+5 =0.

,8,tEQ, r<s<t relf, teQ’ seEN

References

[1] S. Abhyankar, Ramification theoretic methods in algebraic geometry, Princeton University
Press, 1959.

, Mathieu group coverings in characteristic two, C. R. Acad. Sci. Paris Ser. I

Math. 316 (1993), no. 3, 267-271.

, Galois embeddings for linear groups, Trans. Amer. Math. Soc. 352 (2000}, no.
8, 3881-3912.

[4] S. Abhyankar and I. Yie, Some more Mathieu group coverings in characteristic two, Proc.
Amer. Math. Soc. 122 (1994), no. 4, 1007-1014.

, Small Mathieu group coverings in characteristic two, Proc. Amer. Math. Soc.
123 (1995), no. 5, 1319-1329.

[6] J. H. Conway and N. J. A. Sloan, Sphere packings, lattices and groups, Springer Verlag,
New York, 1993.

[7] D. Saltman, Generic Galois extensions and problems in field theory, Adv. Math. 43
(1982), no. 3, 250-283.

[8] 1. Yie, Mathieu group coverings and Golay codes, J. Korean Math. Soc. 39 (2002), no. 2,
289-317.

(2]
(3]

(5]

DEPARTMENT OF MATHEMATICS

INHA UNIVERSITY

INCHON 402-751, KOREA

E-mail address: ikyie@math.inha.ac.kr



