Browse > Article
http://dx.doi.org/10.7858/eamj.2022.034

FORM CLASS GROUPS ISOMORPHIC TO THE GALOIS GROUPS OVER RING CLASS FIELDS  

Yoon, Dong Sung (Department of Mathematics Education Pusan National University)
Publication Information
Abstract
Let K be an imaginary quadratic field and 𝒪 be an order in K. Let H𝒪 be the ring class field of 𝒪. Furthermore, for a positive integer N, let K𝒪,N be the ray class field modulo N𝒪 of 𝒪. When the discriminant of 𝒪 is different from -3 and -4, we construct an extended form class group which is isomorphic to the Galois group Gal(K𝒪,N/H𝒪) and describe its Galois action on K𝒪,N in a concrete way.
Keywords
Class field theory; form class groups;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. Stevenhagen, Hilbert's 12th problem, complex multiplication and Shimura reciprocity, Class field theory-its centenary and prospect (Tokyo, 1998), 161-176, Adv. Stud. Pure Math. 30, Math. Soc. Japan, Tokyo, 2001.
2 I. S. Eum, J. K. Koo and D. H. Shin, Binary quadratic forms and ray class groups, Proc. Roy. Soc. Edinburgh Sect. A 150 (2020), no. 2, 695-720.   DOI
3 S. Lang, Elliptic Functions, With an appendix by J. Tate, 2nd ed., Grad. Texts in Math. 112, Spinger-Verlag, New York, 1987.
4 B. Cho, Primes of the form x2 + ny2 with conditions x ≡ 1 mod N, y ≡ 0 mod N, J. Number Theory 130 (2010), no. 4, 852--861.   DOI
5 D. A. Cox, Primes of the Form x2 + ny2 : Fermat, Class field theory, and Complex Multiplication, 2nd ed., Pure and Applied Mathematics (Hoboken), John Wiley & Sons, Inc., Hoboken, NJ, 2013.
6 H. Y. Jung, J. K. Koo, D. H. Shin and D. S. Yoon, Arithmetic of orders in imaginary quadratic fields, https://arxiv.org/abs/2205.10754.
7 S. Lang, Algebra, 3rd ed., Grad. Texts in Math. 211, Springer-Verlag, New York, 2002.