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FORM CLASS GROUPS ISOMORPHIC TO THE GALOIS

GROUPS OVER RING CLASS FIELDS

Dong Sung Yoon

Abstract. Let K be an imaginary quadratic field and O be an order

in K. Let HO be the ring class field of O. Furthermore, for a positive

integer N , let KO,N be the ray class field modulo NO of O. When the
discriminant of O is different from −3 and −4, we construct an extended

form class group which is isomorphic to the Galois group Gal(KO,N/HO)

and describe its Galois action on KO,N in a concrete way.

1. Introduction

LetK be an imaginary quadratic field and O be an order inK of discriminant
D. We say that a nonzero O-ideal a is prime to a positive integer ℓ if a+ℓO = O.
It is equivalent to saying that its norm N(a) = |O/a| is relatively prime to ℓ
(cf. [2, Lemma 7.18 (i)] or [4, Lemma 2.2]). Let I(O) be the group of proper
fractional O-ideals and P (O) be its subgroup of principal fractional O-ideals.
For positive integers ℓ and N , we define the subgroups of I(O) and P (O) by

I(O, ℓ) = ⟨a | a is a nonzero proper O-ideal prime to ℓ⟩,
PN (O, ℓ) = ⟨νO | ν ∈ O \ {0}, νO is prime to ℓ and ν ≡ 1 (mod NO)⟩,

(1)
respectively. By the existence theorem of class field theory, there is a unique
abelian extension KO,N of K such that the Artin map induces an isomorphism
of CN (O) = I(O, N)/PN (O, N) onto Gal(KO,N/K) ([2, Theorem 8.6] and [4,
Propositions 2.8 and 2.13]). We call KO,N the ray class field modulo NO of O
or the extended ring class field of order O and level N (cf. [2, §15 B] or [7, §4]).
In particular, KO,1 is the ring class field HO of O because I(O, 1) = I(O) (cf.
[2, Exercise 7.7]), and KOK ,N is the ray class field K(N) modulo (N) = NOK ,
where OK is the ring of integers of K.
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Let Q(D) be the set of primitive positive definite binary quadratic forms of
discriminant D. The proper equivalence ∼ on Q(D) is given by

Q ∼ Q′ ⇐⇒ Q′ = Qα = Q

(
α

[
x
y

])
for some α ∈ SL2(Z).

It is well known that the set C(D) = Q(D)/ ∼ of equivalence classes with the
operation induced from Dirichlet composition becomes an abelian group, called
the form class group of discriminant D (cf. [2, Theorem 3.9]). Furthermore,
C(D) is isomorphic to the ideal class group C(O) = I(O)/P (O) via the map

C(D) → C(O) = I(O)/P (O)
[Q = ax2 + bxy + cy2] 7→ [a[ωQ, 1]]

(2)

where ωQ is the zero of Q(x, 1) in the complex upper half-plane H (cf. [2,
Theorem 7.7]). Hence one can express Gal(HO/K) (∼= C(O)) in terms of the
form class group C(D). Recently, Eum et al. established an extended form
class group isomorphic to the ray class group CN (OK) (∼= Gal(K(N)/K)) and
explicitly described its Galois action on the ray class field K(N) over K ([3,
Theorems 2.9 and 3.10]).

In this paper, we shall construct an extended form class group C0,N (D) which
is isomorphic to the subgroup P1(O, N)/PN (O, N) of CN (O) corresponding to
Gal(KO,N/HO) (Theorem 2.6). Furthermore, we shall give an isomorphism of
C0,N (D) onto Gal(KO,N/HO) in a concrete way (Theorem 3.4).

2. The set C0, N (D) of equivalence classes of quadratic forms

Throughout this paper, we let K be an imaginary quadratic field and O be
an order in K. Let M and D be the conductor and the discriminant of O,
respectively. Let Q(D) be the set of primitive positive definite binary quadratic
forms of discriminant D, namely,

Q(D) =
{
ax2 + bxy + cy2 ∈ Z[x, y] | gcd(a, b, c) = 1, b2 − 4ac = D, a > 0

}
.

For each Q = ax2 + bxy + cy2 ∈ Q(D), let ωQ be the zero of the quadratic
polynomial Q(x, 1) lying in the complex upper half-plane H, that is,

ωQ =
−b+

√
D

2a
.

Then one can readily show that for Q ∈ Q(D) and α =

[
r s
u v

]
∈ SL2(Z)

ωQα = α−1(ωQ) (3)

and

[α(ωQ), 1] =
1

j(α, ωQ)
[ωQ, 1], where j(α, ωQ) = uωQ + v. (4)
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Here, SL2(Z) acts on H as fractional linear transformations. Let Q0 be the
principal form of discriminant D given by

Q0 =


x2 + xy +

1−D

4
y2 if D ≡ 1 (mod 4),

x2 − D

4
y2 if D ≡ 0 (mod 4).

Let ωO = ωQ0 and min(ωO,Q) = x2 + bOx + cO. Then we have O = [ωO, 1]
and bO, cO ∈ Z ([2, Lemma 7.2]).

Let N be a positive integer and denote by

QN (D) =
{
ax2 + bxy + cy2 ∈ Q(D) | gcd(a, N) = 1

}
,

Q0,N (D) = {Qα
0 |α ∈ SL2(Z) satisfies Qα

0 ∈ QN (D)}.

Then the congruence subgroup

Γ1(N) =

{
α ∈ SL2(Z) | α ≡

[
1 ∗
0 1

]
(mod NM2(Z))

}
induces an equivalence relation ∼N on Q0,N (D) as

Q ∼N Q′ ⇐⇒ Q′ = Qα = Q

(
α

[
x
y

])
for some α ∈ Γ1(N)

([3, Proposition 2.1 and Definition 2.2]). We denote the set of equivalence classes
by C0,N (D), that is,

C0,N (D) = Q0,N (D)/ ∼N= {[Q] | Q ∈ Q0,N (D)}.

For a positive integer ℓ, let I(O, ℓ) and PN (O, ℓ) be the groups defined in (1).

Lemma 2.1. If ν ∈ K× satisfies ν − 1 ∈ Na−1 for a proper O-ideal a prime
to N , then νO belongs to PN (O, N).

Proof. Let ν = 1+Na with a ∈ a−1. Since a is prime to N , that is, a+NO = O,
we can select b ∈ O such that

b ≡ 1 (mod NO),

b ≡ 0 (mod a)

by the Chinese remainder theorem ([5, Chapter II, Theorem 2.1]). Then we
have

bν ≡ b+N(ab) ≡ 1 (mod NO).

Therefore, νO = (bνO)(bO)−1 ∈ PN (O, N).
□

Lemma 2.2. For ν ∈ O \ {0}, we have

N(νO) = NK/Q(ν).

Proof. See [2, Lemma 7.14]. □
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Lemma 2.3. If Qα
0 ∈ Q0,N (D) for some α =

[
r s
u v

]
∈ SL2(Z), then we have

[ωQα
0
, 1]−1 ∈ P1(O, N).

Proof. Observe that

[ωQα
0
, 1]−1 = [α−1(ωO), 1]

−1 by (3)
= j(α−1, ωO)O by (4) and the fact [ωO, 1] = O
= (−uωO + r)O

(5)

which is a principal O-ideal. Note that the coefficient of x2 in Qα
0 is Q0(r, u)

which is relatively prime to N by assumption. Since

NK/Q(−uωO + r) = (−uωO + r)(−uωO + r) = r2 + bOru+ cOu
2 = Q0(r, u),

we obtain [ωQα
0
, 1]−1 ∈ P1(O, N) by Lemma 2.2.

□

From now on, we assume D ̸= −3,−4 so that O× = {1,−1} (cf. [2, p. 105]).

Definition 1. We define a map

ϕ0,O,N : C0, N (D) → P1(O, N)/PN (O, N)
[Q] 7→ [[ωQ, 1]

−1]

for Q ∈ Q0,N (D).

Proposition 2.4. The map ϕ0,O,N is well defined.

Proof. Let Q ∈ Q0,N (D). By Lemma 2.3, we have [ωQ, 1]
−1 ∈ P1(O, N). If

Q′ = a′x2 + b′xy + c′y2 ∈ Q0,N (D) satisfies [Q] = [Q′], then Q′ = Qα for some

α =

[
r s
u v

]
∈ Γ1(N). Thus we derive by (3) and (4) that

[ωQ, 1]
−1 = [α(ωQ′), 1]−1 = j(α, ωQ′)[ωQ′ , 1]−1 = (uωQ′ + v)[ωQ′ , 1]−1.

If we write u = Nu′ and v = 1 +Nv′ for some u′, v′ ∈ Z, then we see that

(uωQ′ + v)− 1 = Na′−1(u′(a′ωQ′) + a′v′) ∈ Na′−1O

because O = [a′ωQ′ , 1] ([2, p. 124]). Moreover, since gcd(a′, N) = 1, we get by
Lemma 2.1 that

(uωQ′ + v)O ∈ PN (O, N).

Hence [[ωQ, 1]
−1] = [[ωQ′ , 1]−1] in P1(O, N)/PN (O, N), which proves that ϕ0,O,N

is well defined.
□

Proposition 2.5. The map ϕ0,O,N is bijective.
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Proof. Suppose that ϕ0,O,N ([Q]) = ϕ0,O,N ([Q′]) for some Q,Q′ ∈ Q0,N (D) and
so [[ωQ, 1]

−1] = [[ωQ′ , 1]−1]. Then

[ωQ′ , 1]−1 =
β

γ
[ωQ, 1]

−1 (6)

for some β, γ ∈ O \ {0} satisfying β ≡ γ ≡ 1 (mod NO). Since the map given

in (2) is an isomorphism, we have Q′ = Qα for some α =

[
r s
u v

]
∈ SL2(Z). It

then follows from (3), (4), (6) that

[ωQ, 1]
−1 = (uωQ′ + v)[ωQ′ , 1]−1 =

β

γ
(uωQ′ + v)[ωQ, 1]

−1.

Thus
β

γ
(uωQ′ + v) ∈ O× = {1,−1}. If we write Q′(x, y) = a′x2 + b′xy + c′y2,

then we find that

u(a′ωQ′) + a′v ≡ β{u(a′ωQ′) + a′v} (mod NO) because β ≡ 1 (mod NO)

≡ a′β(uωQ′ + v) (mod NO)

≡ ±a′γ (mod NO)

≡ ±a′ (mod NO) because γ ≡ 1 (mod NO).

Since O = [a′ωQ′ , 1] and gcd(a′, N) = 1, we obtain

u ≡ 0 (mod N), v ≡ ±1 (mod N)

and hence

α ≡ ±
[
1 ±s
0 1

]
(mod N)

because det(α) = 1. We may assume α ∈ Γ1(N) since Qα = Q−α. Thus we
have [Q] = [Q′] in C0, N (D), which implies that ϕ0,O,N is injective.

Now, let C be a class in P1(O, N)/PN (O, N). Note that one can take an O-

ideal νO in C with ν ∈ O. Indeed, if C =

[
ν1
ν2

O
]
for some ν1, ν2 ∈ O\{0} such

that both ν1O and ν2O are prime to N , then we can choose a ∈ O satisfying

a ≡ 1 (mod NO),

a ≡ 0 (mod ν2O)

by the Chinese remainder theorem. If we let ν =

(
a

ν2

)
ν1 ∈ O, then we see

that

C = [aO]

[
ν1
ν2

O
]
= [νO]

because [aO] ∈ PN (O, N). Since O = [ωO, 1], we get ν = −uωO + r for some
r, u ∈ Z. Observe that gcd(r, u,N) = 1 because νO is prime to N . Thus we
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may take a matrix α =

[
r′ s′

u′ v′

]
in SL2(Z) such that

r′ ≡ r (mod N), u′ ≡ u (mod N)

by the surjectivity of the reduction SL2(Z) ↠ SL2(Z/NZ) (cf. [6, Chapter 6
§1]). Then we deduce by (5) that

[ωQα
0
, 1]−1 = (−u′ωO + r′)O = ν−1(−u′ωO + r′)(νO).

Since 1 = ν−1(−uωO + r), we see that

ν−1(−u′ωO + r′)− 1 = ν−1((u− u′)ωO + r′ − r) ∈ ν−1NO.

Hence ν−1(−u′ωO + r′)O ∈ PN (O, N) by Lemma 2.1 and so

ϕ0,O,N ([Qα
0 ]) = [νO] = C.

This proves that ϕ0,O,N is surjective.
□

We define a binary operation · on C0, N (D) by

[Q] · [Q′] = ϕ−1
0,O,N (ϕ0,O,N ([Q])ϕ0,O,N ([Q′])) ([Q], [Q′] ∈ C0, N (D)). (7)

We then achieve the following theorem.

Theorem 2.6. Assume that D ̸= −3,−4. The set C0, N (D) with the bi-
nary operation · in (7) is an abelian group isomorphic to the ideal class group
P1(O, N)/PN (O, N).

3. An isomorphism of C0, N (D) with Gal(KO,N/HO)

In this section, we shall establish an isomorphism of C0, N (D) onto Gal(KO,N/HO)
in a concrete way.

For a positive integer N , let FN be the field of meromorphic modular func-
tions of level N with Fourier coefficients in the cyclotomic field Q(ζN ), where
ζN = e2πi/N (cf. [6, Chapter 6 §3]). It is well known that FN is a Galois
extension of F1 and

Gal(FN/F1) ∼= GL2(Z/NZ)/⟨−I2⟩ = GN · SL2(Z/NZ)/⟨−I2⟩

where

GN =

{[
1 0
0 d

]
| d ∈ (Z/NZ)×

}
/⟨−I2⟩.

More precisely, the element

[[
1 0
0 d

]]
∈ GN acts on FN by∑

n≫−∞
cnq

n/N
τ 7−→

∑
n≫−∞

cσd
n qn/Nτ
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where
∑

n≫−∞ cnq
n/N
τ (qτ = e2πiτ ) is the Fourier expansion of a function in

FN and σd is the element of Gal(Q(ζN )/Q) defined by ζσd

N = ζdN . And, γ̃ ∈
SL2(Z/NZ)/⟨−I2⟩ acts on FN by

hγ̃ = h ◦ γ (h ∈ FN )

where γ is a preimage of γ̃ of SL2(Z) ↠ SL2(Z/NZ)/⟨−I2⟩ (cf. [6, Chapter 6,
Theorem 3]).

Proposition 3.1. We have

KO,N = K(h(ωO) | h ∈ FN is finite at ωO).

Proof. See [1, Theorem 4].
□

For a positive integer N , let

WO, N =

{
γ =

[
t− bOs −cOs

s t

]
| s, t ∈ Z/NZ such that γ ∈ GL2(Z/NZ)

}
,

which is the Cartan subgroup of GL2(Z/NZ) associated with the (Z/NZ)-
algebra O/NO with the ordered basis {ωO +NO, 1 +NO}.

Proposition 3.2 (Shimura’s reciprocity law). Assume that D ̸= −3,−4. Then
the map

µ0,O,N : WO, N/⟨−I2⟩ → Gal(KO,N/HO)
[γ] 7→

(
h(ωO) 7→ hγ̃(ωO) | h ∈ FN is finite at ωO

)
is an isomorphism, where γ̃ is the image of γ in GL2(Z/NZ)/⟨−I2⟩(∼= Gal(FN/F1)).

Proof. See [1, p. 859] or [2, Theorem 15.17]. □

Proposition 3.3. Assume that D ̸= −3,−4. The map

ψ0,O,N : WO, N/⟨−I2⟩ → P1(O, N)/PN (O, N)[[
t− bOs −cOs

s t

]]
7→ [(sωO + t)O]

is an isomorphism.

Proof. Let α =

[
t− bOs −cOs

s t

]
∈WO, N . Since

NK/Q(sωO + t) = (sωO + t)(sωO + t) = cOs
2 − bOst+ t2 = det(α) (8)

is relatively prime to N , (sωO+ t)O belongs to P1(O, N) by Lemma 2.2. Hence
ψ0,O,N is well defined.

Furthermore, if β =

[
t′ − bOs

′ −cOs′
s′ t′

]
∈WO, N , then we find that

αβ =

[
(−cOss′ + tt′)− bO(−bOss′ + st′ + s′t) −cO(−bOss′ + st′ + s′t)

−bOss′ + st′ + s′t −cOss′ + tt′

]
.
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Thus we derive that

ψ0,O,N ([α][β]) = [((−bOss′ + st′ + s′t)ωO − cOss
′ + tt′)O]

= [(sωO + t)(s′ωO + t′)O] because ω2
O = −bOωO − cO

= ψ0,O,N ([α])ψ0,O,N ([β])

which shows that ψ0,O,N is a homomorphism.
If [α] ∈ ker(ψ0,O,N ), then ψ0,O,N ([α]) = (sωO + t)O ∈ PN (O, N) and so

(sωO + t)O =
ν1
ν2

O for some ν1, ν2 ∈ O \ {0} satisfying ν1 ≡ ν2 ≡ 1 (mod NO).

Since O× = {1,−1}, we have ν2(sωO + t) = ±ν1. Hence we obtain that

sωO + t ≡ ν2(sωO + t) ≡ ±ν1 ≡ ±1 (mod NO),

which follows from the fact that O = [ωO, 1], s ≡ 0 (mod N) and t ≡ ±1 (mod
N). Thus [α] = [I2], which yields that ψ0,O,N is injective.
Let C be a class in P1(O, N)/PN (O, N). Take an O-ideal νO in C with ν ∈

O. If we write ν = s′′ωO + t′′ with s′′, t′′ ∈ Z, then γ =

[
t′′ − bOs

′′ −cOs′′
s′′ t′′

]
∈

WO, N by (8) and

ψ0,O,N ([γ]) = [(s′′ωO + t′′)O] = C.

Therefore, ψ0,O,N is surjective. □

Theorem 3.4. Assume that D ̸= −3,−4. Then the map

C0, N (D) → Gal(KO,N/HO)[
Q
[ r s
u v ]

0

]
7→

(
h(ωO) 7→ h

[
r+bOu cOu
−u r

]
(ωO) | h ∈ FN is finite at ωO

)
is an isomorphism.

Proof. Note that the map Φ = µ0,O,N ◦ψ−1
0,O,N ◦ϕ0,O,N is an isomorphism from

C0, N (D) onto Gal(KO,N/HO) by Theorem 2.6, Propositions 3.2 and 3.3. Let

Qα
0 ∈ Q0,N (D) with α =

[
r s
u v

]
∈ SL2(Z). Then we achieve by (5) that

ψ−1
0,O,N◦ϕ0,O,N ([Qα

0 ]) = ψ−1
0,O,N ([[ωQ, 1]

−1]) = ψ−1
0,O,N ([(−uωO+r)O]) =

[[
r + bOu cOu

−u r

]]
.

Therefore, we conclude that for h ∈ FN which is finite at ωO

h(ωO)
Φ([Qα

0 ]) = h(ωO)
µ0,O,N

([[
r+bOu cOu
−u r

]])
= h

[
r+bOu cOu
−u r

]
(ωO)

as desired. □
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