East Asian Math. J.
Vol. 38 (2022), No. 5, pp. 583-591
YNMS
http://dx.doi.org/10.7858/eamj.2022.034

FORM CLASS GROUPS ISOMORPHIC TO THE GALOIS GROUPS OVER RING CLASS FIELDS

Dong Sung Yoon

Abstract

Let K be an imaginary quadratic field and \mathcal{O} be an order in K. Let $H_{\mathcal{O}}$ be the ring class field of \mathcal{O}. Furthermore, for a positive integer N, let $K_{\mathcal{O}, N}$ be the ray class field modulo $N \mathcal{O}$ of \mathcal{O}. When the discriminant of \mathcal{O} is different from -3 and -4 , we construct an extended form class group which is isomorphic to the Galois group $\operatorname{Gal}\left(K_{\mathcal{O}, N} / H_{\mathcal{O}}\right)$ and describe its Galois action on $K_{\mathcal{O}, N}$ in a concrete way.

1. Introduction

Let K be an imaginary quadratic field and \mathcal{O} be an order in K of discriminant D. We say that a nonzero \mathcal{O}-ideal \mathfrak{a} is prime to a positive integer ℓ if $\mathfrak{a}+\ell \mathcal{O}=\mathcal{O}$. It is equivalent to saying that its norm $\mathrm{N}(\mathfrak{a})=|\mathcal{O} / \mathfrak{a}|$ is relatively prime to ℓ (cf. [2, Lemma 7.18 (i)] or [4, Lemma 2.2]). Let $I(\mathcal{O})$ be the group of proper fractional \mathcal{O}-ideals and $P(\mathcal{O})$ be its subgroup of principal fractional \mathcal{O}-ideals. For positive integers ℓ and N, we define the subgroups of $I(\mathcal{O})$ and $P(\mathcal{O})$ by

$$
\begin{align*}
I(\mathcal{O}, \ell) & =\langle\mathfrak{a}| \mathfrak{a} \text { is a nonzero proper } \mathcal{O} \text {-ideal prime to } \ell\rangle, \\
P_{N}(\mathcal{O}, \ell) & =\langle\nu \mathcal{O}| \nu \in \mathcal{O} \backslash\{0\}, \nu \mathcal{O} \text { is prime to } \ell \text { and } \nu \equiv 1(\bmod N \mathcal{O})\rangle, \tag{1}
\end{align*}
$$

respectively. By the existence theorem of class field theory, there is a unique abelian extension $K_{\mathcal{O}, N}$ of K such that the Artin map induces an isomorphism of $\mathcal{C}_{N}(\mathcal{O})=I(\mathcal{O}, N) / P_{N}(\mathcal{O}, N)$ onto $\operatorname{Gal}\left(K_{\mathcal{O}, N} / K\right)([2$, Theorem 8.6] and [4, Propositions 2.8 and 2.13]). We call $K_{\mathcal{O}, N}$ the ray class field modulo $N \mathcal{O}$ of \mathcal{O} or the extended ring class field of order \mathcal{O} and level N (cf. [2, §15 B] or [7, §4]). In particular, $K_{\mathcal{O}, 1}$ is the ring class field $H_{\mathcal{O}}$ of \mathcal{O} because $I(\mathcal{O}, 1)=I(\mathcal{O})$ (cf. [2, Exercise 7.7]), and $K_{\mathcal{O}_{K}, N}$ is the ray class field $K_{(N)}$ modulo $(N)=N \mathcal{O}_{K}$, where \mathcal{O}_{K} is the ring of integers of K.

Received May 19, 2022; Accepted June 30, 2021.
2010 Mathematics Subject Classification. Primary 11R37; Secondary 11E16, 11R29.
Key words and phrases. Class field theory, form class groups.
This work was supported by a 2-Year Research Grant of Pusan National University.

Let $\mathcal{Q}(D)$ be the set of primitive positive definite binary quadratic forms of discriminant D. The proper equivalence \sim on $\mathcal{Q}(D)$ is given by

$$
Q \sim Q^{\prime} \quad \Longleftrightarrow \quad Q^{\prime}=Q^{\alpha}=Q\left(\alpha\left[\begin{array}{l}
x \\
y
\end{array}\right]\right) \text { for some } \alpha \in \mathrm{SL}_{2}(\mathbb{Z})
$$

It is well known that the set $\mathcal{C}(D)=\mathcal{Q}(D) / \sim$ of equivalence classes with the operation induced from Dirichlet composition becomes an abelian group, called the form class group of discriminant D (cf. [2, Theorem 3.9]). Furthermore, $\mathcal{C}(D)$ is isomorphic to the ideal class group $\mathcal{C}(\mathcal{O})=I(\mathcal{O}) / P(\mathcal{O})$ via the map

$$
\begin{array}{ccc}
\mathcal{C}(D) & \rightarrow & \mathcal{C}(\mathcal{O})=I(\mathcal{O}) / P(\mathcal{O}) \\
{\left[Q=a x^{2}+b x y+c y^{2}\right]} & \mapsto & {\left[a\left[\omega_{Q}, 1\right]\right]} \tag{2}
\end{array}
$$

where ω_{Q} is the zero of $Q(x, 1)$ in the complex upper half-plane \mathbb{H} (cf. [2, Theorem 7.7]). Hence one can express $\operatorname{Gal}\left(H_{\mathcal{O}} / K\right)(\cong \mathcal{C}(\mathcal{O}))$ in terms of the form class group $\mathcal{C}(D)$. Recently, Eum et al. established an extended form class group isomorphic to the ray class group $\mathcal{C}_{N}\left(\mathcal{O}_{K}\right)\left(\cong \operatorname{Gal}\left(K_{(N)} / K\right)\right)$ and explicitly described its Galois action on the ray class field $K_{(N)}$ over K ([3, Theorems 2.9 and 3.10]).

In this paper, we shall construct an extended form class group $\mathcal{C}_{0, N}(D)$ which is isomorphic to the subgroup $P_{1}(\mathcal{O}, N) / P_{N}(\mathcal{O}, N)$ of $\mathcal{C}_{N}(\mathcal{O})$ corresponding to $\operatorname{Gal}\left(K_{\mathcal{O}, N} / H_{\mathcal{O}}\right)$ (Theorem 2.6). Furthermore, we shall give an isomorphism of $\mathcal{C}_{0, N}(D)$ onto $\operatorname{Gal}\left(K_{\mathcal{O}, N} / H_{\mathcal{O}}\right)$ in a concrete way (Theorem 3.4).

2. The set $\mathcal{C}_{0, N}(D)$ of equivalence classes of quadratic forms

Throughout this paper, we let K be an imaginary quadratic field and \mathcal{O} be an order in K. Let M and D be the conductor and the discriminant of \mathcal{O}, respectively. Let $\mathcal{Q}(D)$ be the set of primitive positive definite binary quadratic forms of discriminant D, namely,

$$
\mathcal{Q}(D)=\left\{a x^{2}+b x y+c y^{2} \in \mathbb{Z}[x, y] \mid \operatorname{gcd}(a, b, c)=1, b^{2}-4 a c=D, a>0\right\}
$$

For each $Q=a x^{2}+b x y+c y^{2} \in \mathcal{Q}(D)$, let ω_{Q} be the zero of the quadratic polynomial $Q(x, 1)$ lying in the complex upper half-plane \mathbb{H}, that is,

$$
\omega_{Q}=\frac{-b+\sqrt{D}}{2 a} .
$$

Then one can readily show that for $Q \in \mathcal{Q}(D)$ and $\alpha=\left[\begin{array}{ll}r & s \\ u & v\end{array}\right] \in \mathrm{SL}_{2}(\mathbb{Z})$

$$
\begin{equation*}
\omega_{Q^{\alpha}}=\alpha^{-1}\left(\omega_{Q}\right) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[\alpha\left(\omega_{Q}\right), 1\right]=\frac{1}{j\left(\alpha, \omega_{Q}\right)}\left[\omega_{Q}, 1\right], \text { where } j\left(\alpha, \omega_{Q}\right)=u \omega_{Q}+v \tag{4}
\end{equation*}
$$

Here, $\mathrm{SL}_{2}(\mathbb{Z})$ acts on \mathbb{H} as fractional linear transformations. Let Q_{0} be the principal form of discriminant D given by

$$
Q_{0}=\left\{\begin{array}{lll}
x^{2}+x y+\frac{1-D}{4} y^{2} & \text { if } D \equiv 1 & (\bmod 4) \\
x^{2}-\frac{D}{4} y^{2} & \text { if } D \equiv 0 & (\bmod 4)
\end{array}\right.
$$

Let $\omega_{\mathcal{O}}=\omega_{Q_{0}}$ and $\min \left(\omega_{\mathcal{O}}, \mathbb{Q}\right)=x^{2}+b_{\mathcal{O}} x+c_{\mathcal{O}}$. Then we have $\mathcal{O}=\left[\omega_{\mathcal{O}}, 1\right]$ and $b_{\mathcal{O}}, c_{\mathcal{O}} \in \mathbb{Z}([2$, Lemma 7.2]).

Let N be a positive integer and denote by

$$
\begin{aligned}
\mathcal{Q}_{N}(D) & =\left\{a x^{2}+b x y+c y^{2} \in \mathcal{Q}(D) \mid \operatorname{gcd}(a, N)=1\right\}, \\
\mathcal{Q}_{0, N}(D) & =\left\{Q_{0}^{\alpha} \mid \alpha \in \mathrm{SL}_{2}(\mathbb{Z}) \text { satisfies } Q_{0}^{\alpha} \in \mathcal{Q}_{N}(D)\right\} .
\end{aligned}
$$

Then the congruence subgroup

$$
\Gamma_{1}(N)=\left\{\alpha \in \mathrm{SL}_{2}(\mathbb{Z}) \left\lvert\, \alpha \equiv\left[\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right] \quad\left(\bmod N M_{2}(\mathbb{Z})\right)\right.\right\}
$$

induces an equivalence relation \sim_{N} on $\mathcal{Q}_{0, N}(D)$ as

$$
Q \sim_{N} Q^{\prime} \quad \Longleftrightarrow \quad Q^{\prime}=Q^{\alpha}=Q\left(\alpha\left[\begin{array}{l}
x \\
y
\end{array}\right]\right) \text { for some } \alpha \in \Gamma_{1}(N)
$$

([3, Proposition 2.1 and Definition 2.2]). We denote the set of equivalence classes by $\mathcal{C}_{0, N}(D)$, that is,

$$
\mathcal{C}_{0, N}(D)=\mathcal{Q}_{0, N}(D) / \sim_{N}=\left\{[Q] \mid Q \in \mathcal{Q}_{0, N}(D)\right\} .
$$

For a positive integer ℓ, let $I(\mathcal{O}, \ell)$ and $P_{N}(\mathcal{O}, \ell)$ be the groups defined in (1).
Lemma 2.1. If $\nu \in K^{\times}$satisfies $\nu-1 \in N \mathfrak{a}^{-1}$ for a proper \mathcal{O}-ideal \mathfrak{a} prime to N, then $\nu \mathcal{O}$ belongs to $P_{N}(\mathcal{O}, N)$.

Proof. Let $\nu=1+N a$ with $a \in \mathfrak{a}^{-1}$. Since \mathfrak{a} is prime to N, that is, $\mathfrak{a}+N \mathcal{O}=\mathcal{O}$, we can select $b \in \mathcal{O}$ such that

$$
\begin{aligned}
b & \equiv 1(\bmod N \mathcal{O}), \\
b & \equiv 0(\bmod \mathfrak{a})
\end{aligned}
$$

by the Chinese remainder theorem ([5, Chapter II, Theorem 2.1]). Then we have

$$
b \nu \equiv b+N(a b) \equiv 1(\bmod N \mathcal{O})
$$

Therefore, $\nu \mathcal{O}=(b \nu \mathcal{O})(b \mathcal{O})^{-1} \in P_{N}(\mathcal{O}, N)$.

Lemma 2.2. For $\nu \in \mathcal{O} \backslash\{0\}$, we have

$$
\mathrm{N}(\nu \mathcal{O})=\mathrm{N}_{K / \mathbb{Q}}(\nu) .
$$

Proof. See [2, Lemma 7.14].

Lemma 2.3. If $Q_{0}^{\alpha} \in \mathcal{Q}_{0, N}(D)$ for some $\alpha=\left[\begin{array}{ll}r & s \\ u & v\end{array}\right] \in \mathrm{SL}_{2}(\mathbb{Z})$, then we have

$$
\left[\omega_{Q_{0}^{\alpha}}, 1\right]^{-1} \in P_{1}(\mathcal{O}, N)
$$

Proof. Observe that

$$
\begin{align*}
{\left[\omega_{Q_{0}^{\alpha}}, 1\right]^{-1} } & =\left[\alpha^{-1}\left(\omega_{\mathcal{O}}\right), 1\right]^{-1} \text { by }(3) \\
& =j\left(\alpha^{-1}, \omega_{\mathcal{O}}\right) \mathcal{O} \text { by }(4) \text { and the fact }\left[\omega_{\mathcal{O}}, 1\right]=\mathcal{O} \tag{5}\\
& =\left(-u \omega_{\mathcal{O}}+r\right) \mathcal{O}
\end{align*}
$$

which is a principal \mathcal{O}-ideal. Note that the coefficient of x^{2} in Q_{0}^{α} is $Q_{0}(r, u)$ which is relatively prime to N by assumption. Since

$$
\mathrm{N}_{K / \mathbb{Q}}\left(-u \omega_{\mathcal{O}}+r\right)=\left(-u \omega_{\mathcal{O}}+r\right)\left(-u \overline{\omega_{\mathcal{O}}}+r\right)=r^{2}+b_{\mathcal{O}} r u+c_{\mathcal{O}} u^{2}=Q_{0}(r, u)
$$

we obtain $\left[\omega_{Q_{0}^{\alpha}}, 1\right]^{-1} \in P_{1}(\mathcal{O}, N)$ by Lemma 2.2.

From now on, we assume $D \neq-3,-4$ so that $\mathcal{O}^{\times}=\{1,-1\}$ (cf. [2, p. 105]).
Definition 1. We define a map

$$
\begin{array}{cccc}
\phi_{0, \mathcal{O}, N}: & \mathcal{C}_{0, N}(D) & \rightarrow & P_{1}(\mathcal{O}, N) / P_{N}(\mathcal{O}, N) \\
{[Q]} & \mapsto & {\left[\left[\omega_{Q}, 1\right]^{-1}\right]}
\end{array}
$$

for $Q \in \mathcal{Q}_{0, N}(D)$.
Proposition 2.4. The map $\phi_{0, \mathcal{O}, N}$ is well defined.
Proof. Let $Q \in \mathcal{Q}_{0, N}(D)$. By Lemma 2.3, we have $\left[\omega_{Q}, 1\right]^{-1} \in P_{1}(\mathcal{O}, N)$. If $Q^{\prime}=a^{\prime} x^{2}+b^{\prime} x y+c^{\prime} y^{2} \in \mathcal{Q}_{0, N}(D)$ satisfies $[Q]=\left[Q^{\prime}\right]$, then $Q^{\prime}=Q^{\alpha}$ for some $\alpha=\left[\begin{array}{ll}r & s \\ u & v\end{array}\right] \in \Gamma_{1}(N)$. Thus we derive by (3) and (4) that

$$
\left[\omega_{Q}, 1\right]^{-1}=\left[\alpha\left(\omega_{Q^{\prime}}\right), 1\right]^{-1}=j\left(\alpha, \omega_{Q^{\prime}}\right)\left[\omega_{Q^{\prime}}, 1\right]^{-1}=\left(u \omega_{Q^{\prime}}+v\right)\left[\omega_{Q^{\prime}}, 1\right]^{-1}
$$

If we write $u=N u^{\prime}$ and $v=1+N v^{\prime}$ for some $u^{\prime}, v^{\prime} \in \mathbb{Z}$, then we see that

$$
\left(u \omega_{Q^{\prime}}+v\right)-1=N a^{\prime-1}\left(u^{\prime}\left(a^{\prime} \omega_{Q^{\prime}}\right)+a^{\prime} v^{\prime}\right) \in N a^{\prime-1} \mathcal{O}
$$

because $\mathcal{O}=\left[a^{\prime} \omega_{Q^{\prime}}, 1\right]\left(\left[2\right.\right.$, p. 124]). Moreover, since $\operatorname{gcd}\left(a^{\prime}, N\right)=1$, we get by Lemma 2.1 that

$$
\left(u \omega_{Q^{\prime}}+v\right) \mathcal{O} \in P_{N}(\mathcal{O}, N)
$$

Hence $\left[\left[\omega_{Q}, 1\right]^{-1}\right]=\left[\left[\omega_{Q^{\prime}}, 1\right]^{-1}\right]$ in $P_{1}(\mathcal{O}, N) / P_{N}(\mathcal{O}, N)$, which proves that $\phi_{0, \mathcal{O}, N}$ is well defined.

Proposition 2.5. The map $\phi_{0, \mathcal{O}, N}$ is bijective.

Proof. Suppose that $\phi_{0, \mathcal{O}, N}([Q])=\phi_{0, \mathcal{O}, N}\left(\left[Q^{\prime}\right]\right)$ for some $Q, Q^{\prime} \in \mathcal{Q}_{0, N}(D)$ and so $\left[\left[\omega_{Q}, 1\right]^{-1}\right]=\left[\left[\omega_{Q^{\prime}}, 1\right]^{-1}\right]$. Then

$$
\begin{equation*}
\left[\omega_{Q^{\prime}}, 1\right]^{-1}=\frac{\beta}{\gamma}\left[\omega_{Q}, 1\right]^{-1} \tag{6}
\end{equation*}
$$

for some $\beta, \gamma \in \mathcal{O} \backslash\{0\}$ satisfying $\beta \equiv \gamma \equiv 1(\bmod N \mathcal{O})$. Since the map given in (2) is an isomorphism, we have $Q^{\prime}=Q^{\alpha}$ for some $\alpha=\left[\begin{array}{ll}r & s \\ u & v\end{array}\right] \in \operatorname{SL}_{2}(\mathbb{Z})$. It then follows from (3), (4), (6) that

$$
\left[\omega_{Q}, 1\right]^{-1}=\left(u \omega_{Q^{\prime}}+v\right)\left[\omega_{Q^{\prime}}, 1\right]^{-1}=\frac{\beta}{\gamma}\left(u \omega_{Q^{\prime}}+v\right)\left[\omega_{Q}, 1\right]^{-1} .
$$

Thus $\frac{\beta}{\gamma}\left(u \omega_{Q^{\prime}}+v\right) \in \mathcal{O}^{\times}=\{1,-1\}$. If we write $Q^{\prime}(x, y)=a^{\prime} x^{2}+b^{\prime} x y+c^{\prime} y^{2}$, then we find that

$$
\begin{aligned}
u\left(a^{\prime} \omega_{Q^{\prime}}\right)+a^{\prime} v & \equiv \beta\left\{u\left(a^{\prime} \omega_{Q^{\prime}}\right)+a^{\prime} v\right\}(\bmod N \mathcal{O}) \quad \text { because } \beta \equiv 1(\bmod N \mathcal{O}) \\
& \equiv a^{\prime} \beta\left(u \omega_{Q^{\prime}}+v\right)(\bmod N \mathcal{O}) \\
& \equiv \pm a^{\prime} \gamma(\bmod N \mathcal{O}) \\
& \equiv \pm a^{\prime}(\bmod N \mathcal{O}) \quad \text { because } \gamma \equiv 1(\bmod N \mathcal{O})
\end{aligned}
$$

Since $\mathcal{O}=\left[a^{\prime} \omega_{Q^{\prime}}, 1\right]$ and $\operatorname{gcd}\left(a^{\prime}, N\right)=1$, we obtain

$$
u \equiv 0(\bmod N), \quad v \equiv \pm 1(\bmod N)
$$

and hence

$$
\alpha \equiv \pm\left[\begin{array}{cc}
1 & \pm s \\
0 & 1
\end{array}\right](\bmod N)
$$

because $\operatorname{det}(\alpha)=1$. We may assume $\alpha \in \Gamma_{1}(N)$ since $Q^{\alpha}=Q^{-\alpha}$. Thus we have $[Q]=\left[Q^{\prime}\right]$ in $\mathcal{C}_{0, N}(D)$, which implies that $\phi_{0, \mathcal{O}, N}$ is injective.

Now, let C be a class in $P_{1}(\mathcal{O}, N) / P_{N}(\mathcal{O}, N)$. Note that one can take an \mathcal{O} ideal $\nu \mathcal{O}$ in C with $\nu \in \mathcal{O}$. Indeed, if $C=\left[\frac{\nu_{1}}{\nu_{2}} \mathcal{O}\right]$ for some $\nu_{1}, \nu_{2} \in \mathcal{O} \backslash\{0\}$ such that both $\nu_{1} \mathcal{O}$ and $\nu_{2} \mathcal{O}$ are prime to N, then we can choose $a \in \mathcal{O}$ satisfying

$$
\begin{aligned}
a & \equiv 1(\bmod N \mathcal{O}) \\
a & \equiv 0\left(\bmod \nu_{2} \mathcal{O}\right)
\end{aligned}
$$

by the Chinese remainder theorem. If we let $\nu=\left(\frac{a}{\nu_{2}}\right) \nu_{1} \in \mathcal{O}$, then we see that

$$
C=[a \mathcal{O}]\left[\frac{\nu_{1}}{\nu_{2}} \mathcal{O}\right]=[\nu \mathcal{O}]
$$

because $[a \mathcal{O}] \in P_{N}(\mathcal{O}, N)$. Since $\mathcal{O}=\left[\omega_{\mathcal{O}}, 1\right]$, we get $\nu=-u \omega_{\mathcal{O}}+r$ for some $r, u \in \mathbb{Z}$. Observe that $\operatorname{gcd}(r, u, N)=1$ because $\nu \mathcal{O}$ is prime to N. Thus we
may take a matrix $\alpha=\left[\begin{array}{cc}r^{\prime} & s^{\prime} \\ u^{\prime} & v^{\prime}\end{array}\right]$ in $\mathrm{SL}_{2}(\mathbb{Z})$ such that

$$
r^{\prime} \equiv r(\bmod N), \quad u^{\prime} \equiv u(\bmod N)
$$

by the surjectivity of the reduction $\mathrm{SL}_{2}(\mathbb{Z}) \rightarrow \mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z})$ (cf. [6, Chapter 6 $\S 1]$). Then we deduce by (5) that

$$
\left[\omega_{Q_{0}^{\alpha}}, 1\right]^{-1}=\left(-u^{\prime} \omega_{\mathcal{O}}+r^{\prime}\right) \mathcal{O}=\nu^{-1}\left(-u^{\prime} \omega_{\mathcal{O}}+r^{\prime}\right)(\nu \mathcal{O})
$$

Since $1=\nu^{-1}\left(-u \omega_{\mathcal{O}}+r\right)$, we see that

$$
\nu^{-1}\left(-u^{\prime} \omega_{\mathcal{O}}+r^{\prime}\right)-1=\nu^{-1}\left(\left(u-u^{\prime}\right) \omega_{\mathcal{O}}+r^{\prime}-r\right) \in \nu^{-1} N \mathcal{O} .
$$

Hence $\nu^{-1}\left(-u^{\prime} \omega_{\mathcal{O}}+r^{\prime}\right) \mathcal{O} \in P_{N}(\mathcal{O}, N)$ by Lemma 2.1 and so

$$
\phi_{0, \mathcal{O}, N}\left(\left[Q_{0}^{\alpha}\right]\right)=[\nu \mathcal{O}]=C .
$$

This proves that $\phi_{0, \mathcal{O}, N}$ is surjective.

We define a binary operation \cdot on $\mathcal{C}_{0, N}(D)$ by

$$
\begin{equation*}
[Q] \cdot\left[Q^{\prime}\right]=\phi_{0, \mathcal{O}, N}^{-1}\left(\phi_{0, \mathcal{O}, N}([Q]) \phi_{0, \mathcal{O}, N}\left(\left[Q^{\prime}\right]\right)\right) \quad\left([Q],\left[Q^{\prime}\right] \in \mathcal{C}_{0, N}(D)\right) \tag{7}
\end{equation*}
$$

We then achieve the following theorem.
Theorem 2.6. Assume that $D \neq-3,-4$. The set $\mathcal{C}_{0, N}(D)$ with the binary operation • in (7) is an abelian group isomorphic to the ideal class group $P_{1}(\mathcal{O}, N) / P_{N}(\mathcal{O}, N)$.

3. An isomorphism of $\mathcal{C}_{0, N}(D)$ with $\operatorname{Gal}\left(K_{\mathcal{O}, N} / H_{\mathcal{O}}\right)$

In this section, we shall establish an isomorphism of $\mathcal{C}_{0, N}(D)$ onto $\operatorname{Gal}\left(K_{\mathcal{O}, N} / H_{\mathcal{O}}\right)$ in a concrete way.

For a positive integer N, let \mathcal{F}_{N} be the field of meromorphic modular functions of level N with Fourier coefficients in the cyclotomic field $\mathbb{Q}\left(\zeta_{N}\right)$, where $\zeta_{N}=e^{2 \pi \mathrm{i} / N}$ (cf. [6, Chapter $\left.6 \S 3\right]$). It is well known that \mathcal{F}_{N} is a Galois extension of \mathcal{F}_{1} and

$$
\operatorname{Gal}\left(\mathcal{F}_{N} / \mathcal{F}_{1}\right) \cong \mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z}) /\left\langle-I_{2}\right\rangle=G_{N} \cdot \mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z}) /\left\langle-I_{2}\right\rangle
$$

where

$$
G_{N}=\left\{\left.\left[\begin{array}{ll}
1 & 0 \\
0 & d
\end{array}\right] \right\rvert\, d \in(\mathbb{Z} / N \mathbb{Z})^{\times}\right\} /\left\langle-I_{2}\right\rangle
$$

More precisely, the element $\left[\left[\begin{array}{ll}1 & 0 \\ 0 & d\end{array}\right]\right] \in G_{N}$ acts on \mathcal{F}_{N} by

$$
\sum_{n \gg-\infty} c_{n} q_{\tau}^{n / N} \longmapsto \sum_{n \gg-\infty} c_{n}^{\sigma_{d}} q_{\tau}^{n / N}
$$

where $\sum_{n \gg-\infty} c_{n} q_{\tau}^{n / N}\left(q_{\tau}=e^{2 \pi \mathrm{i} \tau}\right)$ is the Fourier expansion of a function in \mathcal{F}_{N} and σ_{d} is the element of $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{N}\right) / \mathbb{Q}\right)$ defined by $\zeta_{N}^{\sigma_{d}}=\zeta_{N}^{d}$. And, $\widetilde{\gamma} \in$ $\mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z}) /\left\langle-I_{2}\right\rangle$ acts on \mathcal{F}_{N} by

$$
h^{\widetilde{\gamma}}=h \circ \gamma \quad\left(h \in \mathcal{F}_{N}\right)
$$

where γ is a preimage of $\widetilde{\gamma}$ of $\mathrm{SL}_{2}(\mathbb{Z}) \rightarrow \mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z}) /\left\langle-I_{2}\right\rangle$ (cf. [6, Chapter 6, Theorem 3]).
Proposition 3.1. We have

$$
K_{\mathcal{O}, N}=K\left(h\left(\omega_{\mathcal{O}}\right) \mid h \in \mathcal{F}_{N} \text { is finite at } \omega_{\mathcal{O}}\right) .
$$

Proof. See [1, Theorem 4].

For a positive integer N, let
$W_{\mathcal{O}, N}=\left\{\left.\gamma=\left[\begin{array}{cc}t-b_{\mathcal{O}} s & -c_{\mathcal{O}} s \\ s & t\end{array}\right] \right\rvert\, s, t \in \mathbb{Z} / N \mathbb{Z}\right.$ such that $\left.\gamma \in \mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})\right\}$,
which is the Cartan subgroup of $\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$ associated with the $(\mathbb{Z} / N \mathbb{Z})$ algebra $\mathcal{O} / N \mathcal{O}$ with the ordered basis $\left\{\omega_{\mathcal{O}}+N \mathcal{O}, 1+N \mathcal{O}\right\}$.
Proposition 3.2 (Shimura's reciprocity law). Assume that $D \neq-3,-4$. Then the map

$$
\begin{aligned}
\mu_{0, \mathcal{O}, N}: \quad W_{\mathcal{O}, N} /\left\langle-I_{2}\right\rangle & \rightarrow \operatorname{Gal}\left(K_{\mathcal{O}, N} / H_{\mathcal{O}}\right) \\
{[\gamma] } & \mapsto\left(h\left(\omega_{\mathcal{O}}\right) \mapsto h^{\widetilde{\gamma}}\left(\omega_{\mathcal{O}}\right) \mid h \in \mathcal{F}_{N} \text { is finite at } \omega_{\mathcal{O}}\right)
\end{aligned}
$$

is an isomorphism, where $\widetilde{\gamma}$ is the image of γ in $\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z}) /\left\langle-I_{2}\right\rangle\left(\cong \operatorname{Gal}\left(\mathcal{F}_{N} / \mathcal{F}_{1}\right)\right)$.
Proof. See [1, p. 859] or [2, Theorem 15.17].
Proposition 3.3. Assume that $D \neq-3,-4$. The map

$$
\left.\psi_{0, \mathcal{O}, N}: \begin{array}{cc}
W_{\mathcal{O}, N} /\left\langle-I_{2}\right\rangle & \rightarrow \\
P_{1}(\mathcal{O}, N) / P_{N}(\mathcal{O}, N) \\
{\left[\begin{array}{cc}
t-b_{\mathcal{O}} s & -c_{\mathcal{O}} s \\
s & t
\end{array}\right]} & \mapsto
\end{array}\right]\left[\left(s \omega_{\mathcal{O}}+t\right) \mathcal{O}\right]
$$

is an isomorphism.
Proof. Let $\alpha=\left[\begin{array}{cc}t-b_{\mathcal{O}} s & -c_{\mathcal{O}} s \\ s & t\end{array}\right] \in W_{\mathcal{O}, N}$. Since

$$
\begin{equation*}
\mathrm{N}_{K / \mathbb{Q}}\left(s \omega_{\mathcal{O}}+t\right)=\left(s \omega_{\mathcal{O}}+t\right)\left(s \overline{\omega_{\mathcal{O}}}+t\right)=c_{\mathcal{O}} s^{2}-b_{\mathcal{O}} s t+t^{2}=\operatorname{det}(\alpha) \tag{8}
\end{equation*}
$$

is relatively prime to $N,\left(s \omega_{\mathcal{O}}+t\right) \mathcal{O}$ belongs to $P_{1}(\mathcal{O}, N)$ by Lemma 2.2. Hence $\psi_{0, \mathcal{O}, N}$ is well defined.

Furthermore, if $\beta=\left[\begin{array}{cc}t^{\prime}-b_{\mathcal{O}} s^{\prime} & -c_{\mathcal{O}} s^{\prime} \\ s^{\prime} & t^{\prime}\end{array}\right] \in W_{\mathcal{O}, N}$, then we find that

$$
\alpha \beta=\left[\begin{array}{cc}
\left(-c_{\mathcal{O}} s s^{\prime}+t t^{\prime}\right)-b_{\mathcal{O}}\left(-b_{\mathcal{O}} s s^{\prime}+s t^{\prime}+s^{\prime} t\right) & -c_{\mathcal{O}}\left(-b_{\mathcal{O}} s s^{\prime}+s t^{\prime}+s^{\prime} t\right) \\
-b_{\mathcal{O}} s s^{\prime}+s t^{\prime}+s^{\prime} t & -c_{\mathcal{O}} s s^{\prime}+t t^{\prime}
\end{array}\right] .
$$

Thus we derive that

$$
\begin{aligned}
\psi_{0, \mathcal{O}, N}([\alpha][\beta]) & =\left[\left(\left(-b_{\mathcal{O}} s s^{\prime}+s t^{\prime}+s^{\prime} t\right) \omega_{\mathcal{O}}-c_{\mathcal{O}} s s^{\prime}+t t^{\prime}\right) \mathcal{O}\right] \\
& =\left[\left(s \omega_{\mathcal{O}}+t\right)\left(s^{\prime} \omega_{\mathcal{O}}+t^{\prime}\right) \mathcal{O}\right] \quad \text { because } \omega_{\mathcal{O}}^{2}=-b_{\mathcal{O}} \omega_{\mathcal{O}}-c_{\mathcal{O}} \\
& =\psi_{0, \mathcal{O}, N}([\alpha]) \psi_{0, \mathcal{O}, N}([\beta])
\end{aligned}
$$

which shows that $\psi_{0, \mathcal{O}, N}$ is a homomorphism.
If $[\alpha] \in \operatorname{ker}\left(\psi_{0, \mathcal{O}, N}\right)$, then $\psi_{0, \mathcal{O}, N}([\alpha])=\left(s \omega_{\mathcal{O}}+t\right) \mathcal{O} \in P_{N}(\mathcal{O}, N)$ and so $\left(s \omega_{\mathcal{O}}+t\right) \mathcal{O}=\frac{\nu_{1}}{\nu_{2}} \mathcal{O}$ for some $\nu_{1}, \nu_{2} \in \mathcal{O} \backslash\{0\}$ satisfying $\nu_{1} \equiv \nu_{2} \equiv 1(\bmod N \mathcal{O})$. Since $\mathcal{O}^{\times}=\{1,-1\}$, we have $\nu_{2}\left(s \omega_{\mathcal{O}}+t\right)= \pm \nu_{1}$. Hence we obtain that

$$
s \omega_{\mathcal{O}}+t \equiv \nu_{2}\left(s \omega_{\mathcal{O}}+t\right) \equiv \pm \nu_{1} \equiv \pm 1(\bmod N \mathcal{O})
$$

which follows from the fact that $\mathcal{O}=\left[\omega_{\mathcal{O}}, 1\right], s \equiv 0(\bmod N)$ and $t \equiv \pm 1(\bmod$ $N)$. Thus $[\alpha]=\left[I_{2}\right]$, which yields that $\psi_{0, \mathcal{O}, N}$ is injective.

Let C be a class in $P_{1}(\mathcal{O}, N) / P_{N}(\mathcal{O}, N)$. Take an \mathcal{O}-ideal $\nu \mathcal{O}$ in C with $\nu \in$ \mathcal{O}. If we write $\nu=s^{\prime \prime} \omega_{\mathcal{O}}+t^{\prime \prime}$ with $s^{\prime \prime}, t^{\prime \prime} \in \mathbb{Z}$, then $\gamma=\left[\begin{array}{cc}t^{\prime \prime}-b_{\mathcal{O}} s^{\prime \prime} & -c_{\mathcal{O}} s^{\prime \prime} \\ s^{\prime \prime} & t^{\prime \prime}\end{array}\right] \in$ $W_{\mathcal{O}, N}$ by (8) and

$$
\psi_{0, \mathcal{O}, N}([\gamma])=\left[\left(s^{\prime \prime} \omega_{\mathcal{O}}+t^{\prime \prime}\right) \mathcal{O}\right]=C
$$

Therefore, $\psi_{0, \mathcal{O}, N}$ is surjective.
Theorem 3.4. Assume that $D \neq-3,-4$. Then the map

$$
\begin{aligned}
& \mathcal{C}_{0, N}(D) \rightarrow \operatorname{Gal}\left(K_{\mathcal{O}, N} / H_{\mathcal{O}}\right)
\end{aligned}
$$

is an isomorphism.
Proof. Note that the map $\Phi=\mu_{0, \mathcal{O}, N} \circ \psi_{0, \mathcal{O}, N}^{-1} \circ \phi_{0, \mathcal{O}, N}$ is an isomorphism from $\mathcal{C}_{0, N}(D)$ onto $\operatorname{Gal}\left(K_{\mathcal{O}, N} / H_{\mathcal{O}}\right)$ by Theorem 2.6, Propositions 3.2 and 3.3. Let $Q_{0}^{\alpha} \in \mathcal{Q}_{0, N}(D)$ with $\alpha=\left[\begin{array}{ll}r & s \\ u & v\end{array}\right] \in \mathrm{SL}_{2}(\mathbb{Z})$. Then we achieve by (5) that
$\left.\psi_{0, \mathcal{O}, N}^{-1} \circ \phi_{0, \mathcal{O}, N}\left(\left[Q_{0}^{\alpha}\right]\right)=\psi_{0, \mathcal{O}, N}^{-1}\left(\left[\left[\omega_{Q}, 1\right]^{-1}\right]\right)=\psi_{0, \mathcal{O}, N}^{-1}\left(\left[\left(-u \omega_{\mathcal{O}}+r\right) \mathcal{O}\right]\right)=\left[\begin{array}{cc}r+b_{\mathcal{O}} u & c_{\mathcal{O}} u \\ -u & r\end{array}\right]\right]$.
Therefore, we conclude that for $h \in \mathcal{F}_{N}$ which is finite at $\omega_{\mathcal{O}}$

$$
\left.h\left(\omega_{\mathcal{O}}\right)^{\Phi\left(\left[Q_{0}^{\alpha}\right]\right)}=h\left(\omega_{\mathcal{O}}\right)^{\mu_{0, \mathcal{O}, N}}\left(\left[\left[\begin{array}{cc}
r+b_{\mathcal{O}} u & c_{\mathcal{O}} u \\
-u
\end{array}\right]\right]\right)=h^{\left[\begin{array}{c}
r+b_{\mathcal{O}} u \\
-u
\end{array} c_{\mathcal{O}} u\right.}\right]_{\left(\omega_{\mathcal{O}}\right)}
$$

as desired.

References

[1] B. Cho, Primes of the form $x^{2}+n y^{2}$ with conditions $x \equiv 1 \bmod N, y \equiv 0 \bmod N$, J. Number Theory 130 (2010), no. 4, 852--861.
[2] D. A. Cox, Primes of the Form $x^{2}+n y^{2}$: Fermat, Class field theory, and Complex Multiplication, 2nd ed., Pure and Applied Mathematics (Hoboken), John Wiley \& Sons, Inc., Hoboken, NJ, 2013.
[3] I. S. Eum, J. K. Koo and D. H. Shin, Binary quadratic forms and ray class groups, Proc. Roy. Soc. Edinburgh Sect. A 150 (2020), no. 2, 695-720.
[4] H. Y. Jung, J. K. Koo, D. H. Shin and D. S. Yoon, Arithmetic of orders in imaginary quadratic fields, https://arxiv.org/abs/2205.10754.
[5] S. Lang, Algebra, 3rd ed., Grad. Texts in Math. 211, Springer-Verlag, New York, 2002.
[6] S. Lang, Elliptic Functions, With an appendix by J. Tate, 2nd ed., Grad. Texts in Math. 112, Spinger-Verlag, New York, 1987.
[7] P. Stevenhagen, Hilbert's 12th problem, complex multiplication and Shimura reciprocity, Class field theory - its centenary and prospect (Tokyo, 1998), 161-176, Adv. Stud. Pure Math. 30, Math. Soc. Japan, Tokyo, 2001.

Dong Sung Yoon
Department of Mathematics Education
Pusan National University
Busan 46241
Republic of Korea
Email address: dsyoon@pusan.ac.kr

