• Title/Summary/Keyword: Gallium oxide($Ga_2O_3$)

Search Result 63, Processing Time 0.035 seconds

Study on the Seasoning Effect for Amorphous In-Ga-Zn-O Thin Film Transistors with Soluble Hybrid Passivation

  • Yun, Su-Bok;Kim, Du-Hyeon;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.256-256
    • /
    • 2012
  • Oxide semiconductors such as zinc tin oxide (ZTO) or indium gallium zinc oxide (IGZO) have attracted a lot of research interest owing to their high potential for application as thin film transistors (TFTs) [1,2]. However, the instability of oxide TFTs remains as an obstacle to overcome for practical applications to electronic devices. Several studies have reported that the electrical characteristics of ZnO-based transistors are very sensitive to oxygen, hydrogen, and water [3,4,5]. To improve the reliability issue for the amorphous InGaZnO (a-IGZO) thin-film transistor, back channel passivation layer is essential for the long term bias stability. In this study, we investigated the instability of amorphous indium-gallium-zinc-oxide (IGZO) thin film transistors (TFTs) by the back channel contaminations. The effect of back channel contaminations (humidity or oxygen) on oxide transistor is of importance because it might affect the transistor performance. To remove this environmental condition, we performed vacuum seasoning before the deposition of hybrid passivation layer and acquired improved stability. It was found that vacuum seasoning can remove the back channel contamination if a-IGZO film. Therefore, to achieve highly stable oxide TFTs we suggest that adsorbed chemical gas molecules have to be eliminated from the back-channel prior to forming the passivation layers.

  • PDF

Properties of Transparent Conducting Zinc Oxide Films Prepared by RF Sputtering (RF Sputter 방법으로 제조한 투명전도막 ZnO 특성)

  • Choe, Byung-Ho
    • Korean Journal of Materials Research
    • /
    • v.2 no.5
    • /
    • pp.360-365
    • /
    • 1992
  • Ga-doped polycrystalline ZnO films on glass substrates were prepared by sputtering the targets, which had been prepared by sintering discs consisting of ZnO powder and various amounts of G$a_2O_3$, to investigate the effects of gallium doping and sputtering conditions on electrical properties. Optimizing the RF power density, argon gas pressure and gallium content, transparent Ga-doped ZnO films with resistivity less than 1$0^{-3}$ohm-cm are obtained. Electron concentration of undoped and Ga-doped ZnO films are order of $10^{18}$, $10^{21}$/c$m^2$respectively. After heat treatment in air and $N_2atmosphere, $ the resistivity of Ga-doped ZnO films increases by about two orders of magnitude. The optical transmission is above 80% in the visible range and the optical band widens as the Ga content increases.

  • PDF

Solution-Processed Indium-Gallium Oxide Thin-Film Transistors for Power Electronic Applications (전력반도체 응용을 위한 용액 공정 인듐-갈륨 산화물 반도체 박막 트랜지스터의 성능과 안정성 향상 연구)

  • Se-Hyun Kim;Jeong Min Lee;Daniel Kofi Azati;Min-Kyu Kim;Yujin Jung;Kang-Jun Baeg
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.4
    • /
    • pp.400-406
    • /
    • 2024
  • Next-generation wide-bandgap semiconductors such as SiC, GaN, and Ga2O3 are being considered as potential replacements for current silicon-based power devices due to their high mobility, larger size, and production of high-quality wafers at a moderate cost. In this study, we investigate the gradual modulation of chemical composition in multi-stacked metal oxide semiconductor thin films to enhance the performance and bias stability of thin-film transistors (TFTs). It demonstrates that adjusting the Ga ratio in the indium gallium oxide (IGO) semiconductor allows for precise control over the threshold voltage and enhances device stability. Moreover, employing multiple deposition techniques addresses the inherent limitations of solution-processed amorphous oxide semiconductor TFTs by mitigating porosity induced by solvent evaporation. It is anticipated that solution-processed indium gallium oxide (IGO) semiconductors, with a Ga ratio exceeding 50%, can be utilized in the production of oxide semiconductors with wide band gaps. These materials hold promise for power electronic applications necessitating high voltage and current capabilities.

Recovery of Gallium from Zinc Residues by Solvent Extraction (아연제련잔사로부터 용매추출법에 의한 갈륨의 회수)

  • 김성규;이화영;오종기
    • Resources Recycling
    • /
    • v.9 no.3
    • /
    • pp.29-36
    • /
    • 2000
  • A study on the recovery of gallium from leaching solutions is carried out by solvent extraction in order to produce gallium oxide of high purity. The results show that the extraction of gallium is found to be increase with acidities of aqueous solution up to 7.4 M/L when pure isopropyl ether is used. And the extraction of iron also increases with increasing acidity of aqueous solution. It appears that the separation of gallium from iron cannot be satisfactorily accomplished with isopropyl ether. But, in the case of extaction with D2EHPA, almost complete extraction of iron is achieved-leaving all the gallium in the aqueous solution-by maintaining the acidity of aqueous solution at 2 M/L. Accordingly, $Ga_2O_3{\cdot}H_2O$ of more than 99wt.% in purity can be produced from zinc residues through the processes comprising of alkali leaching, precipitation by neutralization and solvent extraction using isopropyl ether and D2EHPA as extractants.

  • PDF

Chemical Vapor Deposition of Ga2O3 Thin Films on Si Substrates

  • Kim, Doo-Hyun;Yoo, Seung-Ho;Chung, Taek-Mo;An, Ki-Seok;Yoo, Hee-Soo;Kim, Yun-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.225-228
    • /
    • 2002
  • Amorphous $Ga_2O_3$ films have been grown on Si(100) substrates by metal organic chemical vapor deposition (MOCVD) using gallium isopropoxide, $Ga(O^iPr)_3$, as single precursor. Deposition was carried out in the substrate temperature range 400-800 $^{\circ}C$. X-ray photoelectron spectroscopy (XPS) analysis revealed deposition of stoichiometric $Ga_2O_3$ thin films at 500-600 $^{\circ}C$. XPS depth profiling by $Ar^+$ ion sputtering indicated that carbon contamination exists mostly in the surface region with less than 3.5% content in the film. Microscopic images of the films by scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed formation of grains of approximately 20-40 nm in size on the film surfaces. The root-mean-square surface roughness from an AFM image was ${\sim}10{\AA}$. The interfacial layer of the $Ga_2O_3$/Si was measured to be ${\sim}35{\AA}$ thick by cross-sectional transmission electron microscopy (TEM). From the analysis of gaseous products of the CVD reaction by gas chromatography-mass spectrometry (GC-MS), an effort was made to explain the CVD mechanism.

Fabrication and Characteristics of Zinc Oxide- and Gallium doped Zinc Oxide thin film transistor using Radio Frequency Magnetron sputtering at Room Temperature (Zinc Oxide와 갈륨이 도핑 된 Zinc Oxide를 이용하여 Radio Frequency Magnetron Sputtering 방법에 의해 상온에서 제작된 박막 트랜지스터의 특성 평가)

  • Jeon, Hoon-Ha;Verma, Ved Prakash;Noh, Kyoung-Seok;Kim, Do-Hyun;Choi, Won-Bong;Jeon, Min-Hyon
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.5
    • /
    • pp.359-365
    • /
    • 2007
  • In this paper we present a bottom-gate type of zinc oxide (ZnO) and Gallium (Ga) doped zinc oxide (GZO) based thin film transistors (TFTs) through applying a radio frequency (RF) magnetron sputtering method at room temperature. The gate leakage current can be reduced up to several ph by applying $SiO_2$ thermally grown instead of using new gate oxide materials. The root mean square (RMS) values of the ZnO and GZO film surface were measured as 1.07 nm and 1.65 nm, respectively. Also, the transmittances of the ZnO and GZO film were more than 80% and 75%, respectively, and they were changed as their film thickness. The ZnO and GZO film had a wurtzite structure that was arranged well as a (002) orientation. The ZnO TFT had a threshold voltage of 2.5 V, a field effect mobility of $0.027\;cm^2/(V{\cdot}s)$, a on/off ratio of $10^4$, a gate voltage swing of 17 V/decade and it operated in a enhancement mode. In case of the GZO TFT, it operated in a depletion mode with a threshold voltage of -3.4 V, a field effect mobility of $0.023\;cm^2/(V{\cdot}s)$, a on/off ratio of $2{\times}10^4$ and a gate voltage swing of 3.3 V/decade. We successfully demonstrated that the TFTs with the enhancement and depletion mode type can be fabricated by using pure ZnO and 1wt% Ga-doped ZnO.

Multicomponent IGZO Ceramics for Transparent Electrode Target Fabricated from Oxides and Nitrates (산화물과 질산염으로 제조한 투명전극 타깃용 다성분계 IGZO 세라믹스)

  • Lee, Hyun-Kwun;Yoon, Ji-Hye;Cho, Kyeong-Sik
    • Journal of Powder Materials
    • /
    • v.26 no.5
    • /
    • pp.375-382
    • /
    • 2019
  • Homogeneous multicomponent indium gallium zinc oxide (IGZO) ceramics for transparent electrode targets are prepared from the oxides and nitrates as the source materials, and their properties are characterized. The selected compositions were $In_2O_3:Ga_2O_3:ZnO$ = 1:1:2, 1:1:6, and 1:1:12 in mole ratio based on oxide. As revealed by X-ray diffraction analysis, calcination of the selected oxide or nitrides at $1200^{\circ}C$ results in the formation of $InGaZnO_4$, $InGaZn_3O_6$, and $InGaZn_5O_8$ phases. The 1:1:2, 1:1:6, and 1:1:12 oxide samples pressed in the form of discs exhibit relative densities of 96.9, 93.2, and 84.1%, respectively, after sintering at $1450^{\circ}C$ for 12 h. The $InGaZn_3O_6$ ceramics prepared from the oxide or nitrate batches comprise large grains and exhibit homogeneous elemental distribution. Under optimized conditions, IGZO multicomponent ceramics with controlled phases, high densities, and homogeneous microstructures (grain and elemental distribution) are obtained.

Influence of Oxidation Temperatures on the Structure and the Microstructure of GaN MOCVD Scraps (MOCVD 공정 중 발생한 GaN 분말 scrap에 대한 대기 산화가 결정조직과 미세조직에 미치는 영향)

  • Hong, Hyun Seon;Ahn, Joong Woo
    • Journal of Powder Materials
    • /
    • v.22 no.4
    • /
    • pp.278-282
    • /
    • 2015
  • The GaN-powder scrap generated in the manufacturing process of LED contains significant amounts of gallium. This waste can be an important resource for gallium through recycling of scraps. In the present study, the influence of annealing temperatures on the structural properties of GaN powder was investigated when the waste was recycled through the mechanochemical oxidation process. The annealing temperature varied from $200^{\circ}C$ to $1100^{\circ}C$ and the changes in crystal structure and microstructure were studied. The annealed powder was characterized using various analytical tools such as TGA, XRD, SEM, and XRF. The results indicate that GaN structure was fully changed to $Ga_2O_3$ structure when annealed above $900^{\circ}C$ for 2 h. And, as the annealing temperature increased, crystallinity and particle size were enhanced. The increase in particle size of gallium oxide was possibly promoted by powder-sintering which merged particles to larger than 50 nm.

Growth Mechanism of Self-Catalytic Ga2O3 Nano-Burr Grown by RF Sputtering

  • Park, Sin-Yeong;Choe, Gwang-Hyeon;Gang, Hyeon-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.462-462
    • /
    • 2013
  • Gallium Oxide (Ga2O3) has been widely investigated for the optoelectronic applications due to its wide bandgap and the optical transparency. Recently, with the development of fabrication techniques in nanometer scale semiconductor materials, there have been an increasing number of extensive reports on the synthesis and characterization of Ga2O3 nano-structures such as nano-wires, nanobelts, and nano-dots. In contrast to typical vaporliquid-solid growth mode with metal catalysts to synthesis 1-dimensional nano-wires, there are several difficulties in fabricating the nanostructures by using sputtering techniques. This is attributed to the fact that relatively low growth temperatures and higher growth rate compared with chemical vapor deposition method. In this study, Ga2O3 chestnut burr were synthesized by using radio-frequency magnetron sputtering method. In contrast to typical sputtering method with sintered ceramic target, a Ga2O3 powder (99.99% purity) was used as a sputtering target. Several samples were prepared with varying the growth parameters, especially he growth time and the growth temperature to investigate the growth mechanism. Samples were characterized by using XRD, SEM, and PL measurements. In this presentation, the details of fabrication process and physical properties of Ga2O3 nano chestnut burr will be reported.

  • PDF

Characteristics of MOSFET Devices with Polycrystalline-Gallium-Oxide Thin Films Grown by Mist-CVD (Mist-CVD법으로 증착된 다결정 산화갈륨 박막의 MOSFET 소자 특성 연구)

  • Seo, Dong-Hyun;Kim, Yong-Hyeon;Shin, Yun-Ji;Lee, Myung-Hyun;Jeong, Seong-Min;Bae, Si-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.5
    • /
    • pp.427-431
    • /
    • 2020
  • In this research, we evaluated the electrical properties of polycrystalline-gallium-oxIde (Ga2O3) thin films grown by mist-CVD. A 500~800 nm-thick Ga2O3 film was used as a channel in a fabricated bottom-gate MOSFET device. The phase stability of the β-phase Ga2O3 layer was enhanced by an annealing treatment. A Ti/Al metal stack served as source and drain electrodes. Maximum drain current (ID) exceeded 1 mA at a drain voltage (VD) of 20 V. Electron mobility of the β-Ga2O3 channel was determined from maximum transconductance (gm), as approximately, 1.39 ㎠/Vs. Reasonable device characteristics were demonstrated, from measurement of drain current-gate voltage, for mist-CVD-grown Ga2O3 thin films.