Browse > Article
http://dx.doi.org/10.5757/JKVS.2007.16.5.359

Fabrication and Characteristics of Zinc Oxide- and Gallium doped Zinc Oxide thin film transistor using Radio Frequency Magnetron sputtering at Room Temperature  

Jeon, Hoon-Ha (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University)
Verma, Ved Prakash (Department of Mechanical & Materials Engineering, Florida International University)
Noh, Kyoung-Seok (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University)
Kim, Do-Hyun (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University)
Choi, Won-Bong (Department of Mechanical & Materials Engineering, Florida International University)
Jeon, Min-Hyon (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University)
Publication Information
Journal of the Korean Vacuum Society / v.16, no.5, 2007 , pp. 359-365 More about this Journal
Abstract
In this paper we present a bottom-gate type of zinc oxide (ZnO) and Gallium (Ga) doped zinc oxide (GZO) based thin film transistors (TFTs) through applying a radio frequency (RF) magnetron sputtering method at room temperature. The gate leakage current can be reduced up to several ph by applying $SiO_2$ thermally grown instead of using new gate oxide materials. The root mean square (RMS) values of the ZnO and GZO film surface were measured as 1.07 nm and 1.65 nm, respectively. Also, the transmittances of the ZnO and GZO film were more than 80% and 75%, respectively, and they were changed as their film thickness. The ZnO and GZO film had a wurtzite structure that was arranged well as a (002) orientation. The ZnO TFT had a threshold voltage of 2.5 V, a field effect mobility of $0.027\;cm^2/(V{\cdot}s)$, a on/off ratio of $10^4$, a gate voltage swing of 17 V/decade and it operated in a enhancement mode. In case of the GZO TFT, it operated in a depletion mode with a threshold voltage of -3.4 V, a field effect mobility of $0.023\;cm^2/(V{\cdot}s)$, a on/off ratio of $2{\times}10^4$ and a gate voltage swing of 3.3 V/decade. We successfully demonstrated that the TFTs with the enhancement and depletion mode type can be fabricated by using pure ZnO and 1wt% Ga-doped ZnO.
Keywords
zinc oxide (ZnO); gallium doped zinc oxide (GZO); thin film transistors (TFTs); enhancement mode; depletion mode;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. Hu and R. G. Gordon, Sol. Cells 30, 437 (1991)   DOI   ScienceOn
2 B. H. Choi, H. B. Im, J. S. Song and K. H. Yoon: Thin Solid Films 193 (1990) 712   DOI   ScienceOn
3 V. P. Verma, D. H. Kim, M, H. Jeon, and W. B. Choi: Mater, Res. Soc. Symp. Proc. 963, 0963-Q12- 01 (2007)
4 J. F. Wager, Science 300, 1245 (2003)   DOI   ScienceOn
5 Faruque M. Hossain, J. Nishii, S. Takagi, T. Sugihara, A. Ohtomo, T. Fukumura, H. Koinuma, H. Ohno, and M. Kawasaki, Physica E 21, 911 (2004)   DOI   ScienceOn
6 S. Liang, H. Sheng, Y. Liu, Z. Hio, Y. Lu and H.Shen, J. Cryst. Growth 225, 110 (2001)   DOI   ScienceOn
7 C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1986) 6th ed., p.76
8 H. S. Bae and S. Im, Thin Solid Films 469, 75 (2004)   DOI
9 H. Yamaguchi, M. Iizuka and K. Kudo, Jpn. J. Appl. Phys. 46, No. 4B (2007)
10 S. Pizzini, N. Butta, D. Narducci and M. Palladino, J. Electrochem. Soc. 136, 1945 (1989)   DOI   ScienceOn
11 H. C. Cheng, C.F. Chen, and C. Y. Tsay, Appl. Phys. Lett. 90, 012113 (2007)   DOI   ScienceOn
12 E. M. C. Fortunato, P. M. C. Barquinha, A. C. M. B. G. Pimentel, A. M. F. Gonçalves, A. J. S. Marques, R. F. P. Martins and L. M. N. Pereira, Appl. Phys. Lett. 85, 2541 (2004)   DOI   ScienceOn
13 K. Keis, E. Magnusson, H. Lindstorm, S. E. Lindquist and A. Hagfeldt, Sol. Energy 73, 51 (2002)
14 E. J. Egerton, A. K. Sood, R. Singh, Y. R. Puri, R. F. Davis, J. Pierce, D. C. Look and T. Steiner, J. Electron. Mater. 34, 949 (2005)   DOI   ScienceOn
15 Faruque M. Hossain, J. Nishii, S. Takagi, A. Ohtomo, T. Fukumura, H. Fujioka, H. Ohno, H. Koinuma, and M. Kawasaki, A. Appl. Phys. 94, 12 (2003)
16 N. Saito, H. Haneda, T. Sekiguchi, N. Ohashi, I. Sakaguchi and K. Koumoto, Adv. Mater. 14, 418 (2002)   DOI   ScienceOn
17 R. Navamathavan, J. H. Lim, D. K. Hwang, B. H. Kim, J. Y. Oh, J. H. Yang, H. S. Kim, S. J. Park, and J. H. Jang, J. Korean Phys. Soc. 48, 2 (2006)
18 E. Fortunato, A. Pimentel, L. Pereira, A. Gonçalves. G. Lavareda, H. A'guas, I. Ferreira, C. N. Caravalho, and R. Martins, J. Non-Cryst. Solids 338, 806 (2004)   DOI   ScienceOn
19 C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E. M. Kaidashev, M. Lorenz, and M. Grundmann, Appl. Phys. Lett. 83, 1974 (2003)   DOI   ScienceOn