DOI QR코드

DOI QR Code

Influence of Oxidation Temperatures on the Structure and the Microstructure of GaN MOCVD Scraps

MOCVD 공정 중 발생한 GaN 분말 scrap에 대한 대기 산화가 결정조직과 미세조직에 미치는 영향

  • Hong, Hyun Seon (Sungshin University, Department of Interdisciplinary ECO Science) ;
  • Ahn, Joong Woo (Sungshin University, Department of Interdisciplinary ECO Science)
  • 홍현선 (성신여자대학교 청정융합과학과) ;
  • 안중우 (성신여자대학교 청정융합과학과)
  • Received : 2015.08.04
  • Accepted : 2015.08.26
  • Published : 2015.08.28

Abstract

The GaN-powder scrap generated in the manufacturing process of LED contains significant amounts of gallium. This waste can be an important resource for gallium through recycling of scraps. In the present study, the influence of annealing temperatures on the structural properties of GaN powder was investigated when the waste was recycled through the mechanochemical oxidation process. The annealing temperature varied from $200^{\circ}C$ to $1100^{\circ}C$ and the changes in crystal structure and microstructure were studied. The annealed powder was characterized using various analytical tools such as TGA, XRD, SEM, and XRF. The results indicate that GaN structure was fully changed to $Ga_2O_3$ structure when annealed above $900^{\circ}C$ for 2 h. And, as the annealing temperature increased, crystallinity and particle size were enhanced. The increase in particle size of gallium oxide was possibly promoted by powder-sintering which merged particles to larger than 50 nm.

Keywords

References

  1. S. Nakamura and J. Tietian: Appl. Phys. Lett., 74 (1994) 1687.
  2. Q. K. Yang, A. Z. Li, Y. G. Zhang, B. Yang, et al.: J. Cryst. Growth, 192 (1998) 28. https://doi.org/10.1016/S0022-0248(98)00418-7
  3. O. Brandt, H. J. Wuensche, H. Yang, R. Klann, J. R. Muellhaeuser and K. H. Ploog: J. Cryst. Growth, 189-190 (1998) 790. https://doi.org/10.1016/S0022-0248(98)00295-4
  4. S. Nakamura, M. Senoh and S. Nagahama: J. Appl. Phys., 35 (1996) 74. https://doi.org/10.1143/JJAP.35.L74
  5. C. Yeh, Z. W. Lu, S. Froyen and A. Zunger: Phy. Rev. B, 46 (1992) 10086. https://doi.org/10.1103/PhysRevB.46.10086
  6. R. Moskalyk: Minerals Eng., 16 (2003) 921. https://doi.org/10.1016/j.mineng.2003.08.003
  7. Y. K. Lee, Y. U. Sohn, C. W. Nam, Y. Y. Choi and S. U. Hong: J. Korean Inst. of Resources Recycling, 4 (1995) 10 (Korean).
  8. Y. Y. Choi, C. W. Nam, Y. T. Yu and W. Y. Kim: J. Korean Inst. of Resources Recycling, 14 (2005) 28 (Korean).
  9. J. G. Yang, S. S. Lee, J. H. Kim and Y. G. Hwang: J. Korean Inst. of Resources Recycling, 2 (1993) 27 (Korean).
  10. K. S. Park, B. Swain, L. S. Kang, C. G. Lee, H. S. Hong, J. G. Shim and J. J. Park: J. Korean Powder Metall. Inst., 21 (2014) 202 (Korean). https://doi.org/10.4150/KPMI.2014.21.3.202
  11. K. S. Park, B. Swain, L. S. Kang, C. G. Lee, S. H. Uhm, H. S. Hong, J. G. Shim and J. J. Park: Appl. Chem. Eng., 25 (2014) 414. https://doi.org/10.14478/ace.2014.1059
  12. B. Swain, C. Mishra, L. S. Kang, K. S. Park, C. G. Lee and H. S. Hong: Environmental Research, 183 (2015) 401.
  13. B. Swain, C. Mishra, L. S. Kang, K. S. Park, C. G. Lee, H. S. Hong and J. J. Park: J. Power Sources, 281 (2015) 265. https://doi.org/10.1016/j.jpowsour.2015.01.189