DOI QR코드

DOI QR Code

Fabrication and Characteristics of Zinc Oxide- and Gallium doped Zinc Oxide thin film transistor using Radio Frequency Magnetron sputtering at Room Temperature

Zinc Oxide와 갈륨이 도핑 된 Zinc Oxide를 이용하여 Radio Frequency Magnetron Sputtering 방법에 의해 상온에서 제작된 박막 트랜지스터의 특성 평가

  • Jeon, Hoon-Ha (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University) ;
  • Verma, Ved Prakash (Department of Mechanical & Materials Engineering, Florida International University) ;
  • Noh, Kyoung-Seok (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University) ;
  • Kim, Do-Hyun (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University) ;
  • Choi, Won-Bong (Department of Mechanical & Materials Engineering, Florida International University) ;
  • Jeon, Min-Hyon (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University)
  • 전훈하 (인제대학교 나노시스템공학과 / 나노 메뉴팩처링 센터) ;
  • ;
  • 노경석 (인제대학교 나노시스템공학과 / 나노 메뉴팩처링 센터) ;
  • 김도현 (인제대학교 나노시스템공학과 / 나노 메뉴팩처링 센터) ;
  • 최원봉 ;
  • 전민현 (인제대학교 나노시스템공학과 / 나노 메뉴팩처링 센터)
  • Published : 2007.09.30

Abstract

In this paper we present a bottom-gate type of zinc oxide (ZnO) and Gallium (Ga) doped zinc oxide (GZO) based thin film transistors (TFTs) through applying a radio frequency (RF) magnetron sputtering method at room temperature. The gate leakage current can be reduced up to several ph by applying $SiO_2$ thermally grown instead of using new gate oxide materials. The root mean square (RMS) values of the ZnO and GZO film surface were measured as 1.07 nm and 1.65 nm, respectively. Also, the transmittances of the ZnO and GZO film were more than 80% and 75%, respectively, and they were changed as their film thickness. The ZnO and GZO film had a wurtzite structure that was arranged well as a (002) orientation. The ZnO TFT had a threshold voltage of 2.5 V, a field effect mobility of $0.027\;cm^2/(V{\cdot}s)$, a on/off ratio of $10^4$, a gate voltage swing of 17 V/decade and it operated in a enhancement mode. In case of the GZO TFT, it operated in a depletion mode with a threshold voltage of -3.4 V, a field effect mobility of $0.023\;cm^2/(V{\cdot}s)$, a on/off ratio of $2{\times}10^4$ and a gate voltage swing of 3.3 V/decade. We successfully demonstrated that the TFTs with the enhancement and depletion mode type can be fabricated by using pure ZnO and 1wt% Ga-doped ZnO.

본 논문에서는 zinc oxide (ZnO)와 gallium이 도핑 된 zinc oxide (GZO)를 이용하여 radio frequency (RF) magnetron sputtering 방법에 의해 상온에서 제작된 bottom-gate 박막 트랜지스터의 특성을 평가하고 분석하였다. 게이트 절연층 물질로서 새로운 물질을 사용하지 않고 열적 성장된 $SiO_2$를 사용하여 게이트 누설 전류를 수 pA 수준까지 줄일 수 있었다. ZnO와 GZO 박막의 표면 제곱평균제곱근은 각각 1.07 nm, 1.65 nm로 측정되었다. 그리고 ZnO 박막은 80% 이상, GZO 박막은 75% 이상의 투과도를 가지고 있었고, 박막의 두께에 따라 투과도가 달라졌다. 또한 두 시료 모두 (002) 방위로 잘 정렬된 wurtzite 구조를 가지고 있었다. 제작된 ZnO 박막 트랜지스터는 2.5 V의 문턱 전압, $0.027\;cm^2/(V{\cdot}s)$의 전계효과 이동도, 104의 on/off ratio, 1.7 V/decade의 gate voltage swing 값들을 가지고 있었고, enhancement 모드 특성을 가지고 있었다. 반면에 GZO 박막 트랜지스터의 경우에는 -3.4 V의 문턱 전압, $0.023\;cm^2/(V{\cdot}s)$의 전계효과 이동도, $2{\times}10^4$의 on/off ratio, 3.3 V/decade의 gate voltage swing 값들을 가지고 있었고, depletion 모드 특성을 가지고 있었다. 우리는 기존의 ZnO와 1wt%의 Ga이 도핑된 ZnO를 이용하여 두 가지 모드의 트랜지스터 특성을 보이는 박막 트랜지스터를 성공적으로 제작하고 분석하였다.

Keywords

References

  1. H. Yamaguchi, M. Iizuka and K. Kudo, Jpn. J. Appl. Phys. 46, No. 4B (2007)
  2. S. Pizzini, N. Butta, D. Narducci and M. Palladino, J. Electrochem. Soc. 136, 1945 (1989) https://doi.org/10.1149/1.2097092
  3. S. Liang, H. Sheng, Y. Liu, Z. Hio, Y. Lu and H.Shen, J. Cryst. Growth 225, 110 (2001) https://doi.org/10.1016/S0022-0248(01)00830-2
  4. K. Keis, E. Magnusson, H. Lindstorm, S. E. Lindquist and A. Hagfeldt, Sol. Energy 73, 51 (2002)
  5. N. Saito, H. Haneda, T. Sekiguchi, N. Ohashi, I. Sakaguchi and K. Koumoto, Adv. Mater. 14, 418 (2002) https://doi.org/10.1002/1521-4095(20020318)14:6<418::AID-ADMA418>3.0.CO;2-K
  6. H. S. Bae and S. Im, Thin Solid Films 469, 75 (2004) https://doi.org/10.1016/j.tsf.2004.06.196
  7. C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E. M. Kaidashev, M. Lorenz, and M. Grundmann, Appl. Phys. Lett. 83, 1974 (2003) https://doi.org/10.1063/1.1609251
  8. E. J. Egerton, A. K. Sood, R. Singh, Y. R. Puri, R. F. Davis, J. Pierce, D. C. Look and T. Steiner, J. Electron. Mater. 34, 949 (2005) https://doi.org/10.1007/s11664-005-0048-y
  9. J. Hu and R. G. Gordon, Sol. Cells 30, 437 (1991) https://doi.org/10.1016/0379-6787(91)90076-2
  10. B. H. Choi, H. B. Im, J. S. Song and K. H. Yoon: Thin Solid Films 193 (1990) 712 https://doi.org/10.1016/0040-6090(90)90223-Z
  11. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1986) 6th ed., p.76
  12. E. M. C. Fortunato, P. M. C. Barquinha, A. C. M. B. G. Pimentel, A. M. F. Gonçalves, A. J. S. Marques, R. F. P. Martins and L. M. N. Pereira, Appl. Phys. Lett. 85, 2541 (2004) https://doi.org/10.1063/1.1790587
  13. V. P. Verma, D. H. Kim, M, H. Jeon, and W. B. Choi: Mater, Res. Soc. Symp. Proc. 963, 0963-Q12- 01 (2007)
  14. R. Navamathavan, J. H. Lim, D. K. Hwang, B. H. Kim, J. Y. Oh, J. H. Yang, H. S. Kim, S. J. Park, and J. H. Jang, J. Korean Phys. Soc. 48, 2 (2006)
  15. E. Fortunato, A. Pimentel, L. Pereira, A. Gonçalves. G. Lavareda, H. A'guas, I. Ferreira, C. N. Caravalho, and R. Martins, J. Non-Cryst. Solids 338, 806 (2004) https://doi.org/10.1016/j.jnoncrysol.2004.03.096
  16. H. C. Cheng, C.F. Chen, and C. Y. Tsay, Appl. Phys. Lett. 90, 012113 (2007) https://doi.org/10.1063/1.2404590
  17. Faruque M. Hossain, J. Nishii, S. Takagi, A. Ohtomo, T. Fukumura, H. Fujioka, H. Ohno, H. Koinuma, and M. Kawasaki, A. Appl. Phys. 94, 12 (2003)
  18. Faruque M. Hossain, J. Nishii, S. Takagi, T. Sugihara, A. Ohtomo, T. Fukumura, H. Koinuma, H. Ohno, and M. Kawasaki, Physica E 21, 911 (2004) https://doi.org/10.1016/j.physe.2003.11.149
  19. J. F. Wager, Science 300, 1245 (2003) https://doi.org/10.1126/science.1085276

Cited by

  1. Study the Effects of Precursor Concentration on ZnO Nanorod Arrays by Hydrothermal Method vol.18, pp.1, 2009, https://doi.org/10.5757/JKVS.2009.18.1.073